CMR: Với n\(\in\) N, nếu \(n^2⋮5\) thì n\(⋮\) 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 chia 4 dư 1 suy ra 5^n chia 4 dư 1
mà 1 chia 4 dư 1
suy ra 5^n-1 chia hết cho 4 với mọi n
\(A=1^n+2^n+3^n+4^n\)
n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.
Ta lập bảng chữ số tận cùng
n | n=4k+1 | n=4k+2 | n=4k+3 |
1n | 1 | 1 | 1 |
2n | ...2 | ...4 | ...8 |
3n | ...3 | ...9 | ...7 |
4n | ...4 | ...6 | ...4 |
A=1n+2n+3n+4n | ...0 | ...0 | ...0 |
A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)
\(=\left(n^3+n\right)\left(n^2+4\right)\)
\(=n^5+4n+5n^3\)
\(=n^5-n+5n+5n^3\)
Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)
5^n có hai chữ tận cùng là 25 vơi mọi n thuộc N*
vậy 5^n+1995=(...25)+1995)=(...20)
hiển nhiên chia hết 20