Giúp mình vs!!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\) mũ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-1}=3.\) \(\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
Ta có công thức : \(\sqrt{x-1}^2=n^2\) thì mới phá được dấu căn bậc 2
Nên ta làm như sau :
\(\sqrt{x-1}=3.\) \(\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)
\(|y-2020|\ge0với\forall y\)
\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)
\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)
\(\Rightarrow M=x+y=-2019+2020=1\)
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Mình làm hơi tắt, để mình làm lại nhé!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=5\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)