K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

A) \(^{x^2-4x+1< 0}\)

⇔ x2 - (2- √3)x -(2+√3)x +4-3 <0

⇔ x2-(2-√3)x - (2+√3) x + (2-√3)(2+√3) <0

⇔ x(x-2+√3) - (2+√3)( x-2+√3) <0

⇔ (x- 2-√3)(x-2+√3) < 0

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2+\sqrt{3}< 0\\x-2-\sqrt{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2+\sqrt{3}>0\\x-2-\sqrt{3}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 2-\sqrt{3}\\x>2+\sqrt{3}\end{matrix}\right.\left(ktm\right)}\\\left\{{}\begin{matrix}x>2-\sqrt{3}\\x< 2+\sqrt{3}\end{matrix}\right.\left(tm\right)}\end{matrix}\right.\)⇔ 2-√3 < x < 2+√3

31 tháng 8 2019

B) 3x2-x+1>0

⇔ 3x2-2.√3.x.\(\frac{1}{2}\) + \(\frac{1}{4}+\frac{3}{4}\)>0

⇔ (√3.x-\(\frac{1}{2}\))2 + \(\frac{3}{4}\) >0 ∀ x ϵ R

10 tháng 1 2016

a)x2-3x+2=0

=>x2-2x-x+2=0

=>x.(x-2)-(x-2)=0

=>(x-2)(x-1)=0

=>x-2=0 hoặc x-1=0

=>x=2 hoặc x=1

b)2x2-5x+3<0

=>2x2-2x-3x+3<0

=>2x.(x-1)-3.(x-1)<0

=>(x-1)(2x-3)<0

TH1: x-1 >0 và 2x-3<0

=>x>1 và x<3/2

=>1<x<3/2

TH2: x-1<0 và 2x-3>0

=>x<1 và x>3/2(vô lí)

Vậy 1<x<3/2

còn câu c bạn tự giải nha

NV
11 tháng 2 2020

\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)

\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)

\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)

\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

c: (3x-2)(x+3)<0

=>x+3>0 và 3x-2<0

=>-3<x<2/3

d: \(\dfrac{x-2}{x-10}>=0\)

=>x-10>0 hoặc x-2<=0

=>x>10 hoặc x<=2

e: \(3x^2+7x+4< 0\)

\(\Leftrightarrow3x^2+3x+4x+4< 0\)

=>(x+1)(3x+4)<0

=>-4/3<x<-1

7 tháng 8 2019

Để A=0 

ta có\(A=\left(3x-1\right)\left(4x+1\right)\)

\(\Rightarrow A=\orbr{\begin{cases}3x-1=0\\4x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-1}{4}\end{cases}}\)