Tìm Min :
B= x^4 - 2x^3 - 4x + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
B1 :a) <=> 3-2x-1=4-x+3
<=> 3-1-4-3=-x+2x
<=>x=-5
b) <=> 4x>16+5
<=>4x>21
<=>x>21/4
c) <=> -x<21-5
<=>-x<16
<=> x>16
B2 :
A =3(X-2)^2-5
Ta có (x-2)^2 > 0
=>3(x-2)^2 > 0
=> 3(x-2)2 -5 > -5
=> A > -5
=> Min A=-5 <=> x=2
\(M=x^4-2x^3+3x^2-4x+2025\\=(x^4-2x^3+x^2)+(2x^2-4x+2)+2023\\=x^2(x^2-2x+1)+2(x^2-2x+1)+2023\\=(x^2-2x+1)(x^2+2)+2023\\=(x-1)^2(x^2+2)+2023\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\x^2+2\ge2>0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)+2023\ge2023\forall x\)
\(\Rightarrow M\ge2023\forall x\)
Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)
Vậy \(Min_M=2023\) khi \(x=1\).