Cho hàm số y=(k+1)x +k-1. chứng tỏ đồ thị hàm số trên luôn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHO hàm số y=2k+ (k+1)
điều kiện hàm số là bậc nhất là \(2k\ne0\Leftrightarrow k\ne0\)
biết đò thị đii qua điểm M (1;4)
=> 4=2k+k+1
<=> 4=3k+1
<=> k=1
vậy k=1 thì đồ thị hàm số là y=2x+2
Gỉa sử đồ thị hàm số y = 2kx + (k + 1) luôn đi qua 1 điểm cố định M(x0;y0)
=> x = x0 ; y = y0
Thay x = x0 ; y = y0 vào đồ thị hàm số trên ta được:
\(y_0=2kx_0+\left(k+1\right)\)
\(\Rightarrow2kx_0+k+1-y_0=0\)
\(\Rightarrow k\left(2x_0+1\right)+1-y_0=0\)
\(\Rightarrow\hept{\begin{cases}2x_0+1=0\\1-y_0=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=1\end{cases}}\)
\(\Rightarrow M\left(\frac{-1}{2};1\right)\)
Vậy......
\(a,m=1\Leftrightarrow y=\left(2-3\right)x+1-5=-x-4\)
\(b,\) Gọi điểm cố định mà hs luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-3\right)x_0+m-5\\ \Leftrightarrow2mx_0-3x_0+m-5-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(3x_0+y_0+5\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\3x_0+y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-5+\dfrac{3}{2}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow A\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)\)
Vậy đths luôn đi qua \(A\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)\) với mọi m
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)