K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

a) \(\left(n-7\right)⋮\left(n+2\right)\)\(\Rightarrow n+2-9⋮n+2\)mà \(n+2⋮n+2\)\(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)\)

\(\Rightarrow n+2=\left\{\pm1;\pm3;\pm9\right\}\)\(\Rightarrow n=\left\{-3;\pm1;-5;-11;7\right\}\)

b) \(4n+7⋮n-3\Rightarrow4n-12+19⋮n-3\)mà \(4n-12=4\left(n-3\right)\Rightarrow4n-12⋮n-3\Rightarrow19⋮n-3\)

\(\Rightarrow n-3\inƯ\left(19\right)\Rightarrow n-3=\left\{\pm1;\pm19\right\}\Rightarrow n=\left\{2;3;-16;22\right\}\)

28 tháng 10 2017

a,      n + 3 \(⋮\)n - 2

\(\Rightarrow\) n + 3 - n + 2 \(⋮\)n - 2

\(\Rightarrow\)\(⋮\) n - 2

\(\Rightarrow\) n \(\in\){3; 1; 7; -3 }

CÁC PHẦN TIẾP THEO THÌ TƯƠNG TỰ

29 tháng 6 2015

a) ta thấy 4n đã chia hết cho n rồi => muốn biểu thức chia hết cho n <=> 5 chia hết cho n <=> n thuộc Ư(5) <=> n thuộc (+-1;+-5)

b) \(n^2-7=n^2-9+2=\left(n-3\right)\left(n+3\right)+2\).  ta thấy (n-3)(n+3) đã chia hết cho n+3 rồi => muốn biểu thức chia hết cho n+3 <=> 2 chia hết cho n+3 <=> n+3 thuộc Ư(2)<=> n+3 thuộc (+-1; +-2)

đến đây lập bảng tìm n nha. kết quả: n thuộc (-2;-4;-1;-5)

c) dễ thấy n+3 chia cho n^2-7 dư n+3 => muốn chia hết thì n+3=0 <=> n=-3

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11

Bạn này làm sai r

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)