K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

\(2\left(3x-1\right)< 2x+4\)

\(\Leftrightarrow6x-2< 2x+4\)

\(\Leftrightarrow4x< 6\)

\(\Leftrightarrow x< \frac{3}{2}\)

29 tháng 8 2019

\(7x-1+2x< 16-x\)

\(\Leftrightarrow10x< 17\)

\(\Leftrightarrow x< \frac{17}{10}\)

15 tháng 3 2022

\(\left|2x+1\right|=4.\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=-4.\\2x+1=4.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}.\\x=\dfrac{3}{2}.\end{matrix}\right.\)

\(\left|3x-2\right|+1=0.\)

\(\Leftrightarrow\left|3x-2\right|=-1\) (vô lý).

\(\Rightarrow x\in\phi.\)

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< \dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)< 5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< 5x^2-14x+21\)

=>-8x-3<-14x+21

=>6x<24

hay x<4

3: \(\dfrac{3x-2}{4}< \dfrac{3x+3}{6}\)

\(\Leftrightarrow3\left(3x-2\right)< 2\left(3x+3\right)\)

=>9x-6<6x+6

=>3x<12

hay x<4

2 tháng 5 2017

a) \(\dfrac{2x-3}{35}\) + \(\dfrac{x\left(x-2\right)}{7}\) < \(\dfrac{x^2}{7}\) - \(\dfrac{2x-3}{5}\)

<=> \(\dfrac{2x-3}{35}\) + \(\dfrac{5x\left(x-2\right)}{7.5}\) < \(\dfrac{5x^2}{7.5}\) - \(\dfrac{7\left(2x-3\right)}{7.5}\)

<=> 2x-3 + 5x2-10x < 5x2 - 14x + 21

<=> 5x2 - 5x2 + 2x -10x + 14x < 21 + 3

<=> 6x < 24

<=> x < 4

vậy bpt có tập nghiệm S={ x < 4 }

2 tháng 5 2017

b) \(\dfrac{3x-2}{4}\) < \(\dfrac{3x+3}{6}\)

<=> \(\dfrac{6\left(3x-2\right)}{6.4}\) < \(\dfrac{4\left(3x+3\right)}{6.4}\)

<=> 18x - 12 < 12x +12

<=> 18x - 12x < 12 + 12

<=>6x < 24

<=> x < 4

vậy bpt có tập nghiệm S={ x < 4 }

30 tháng 7 2019

\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)

Do \(\left(x^2+5\right)>0\)

\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)

Vậy...

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}