K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

Ta có:

\(x+\frac{1}{x}=5\)

\(\Rightarrow\frac{2x+1}{x}=\frac{5x}{x}\)

\(\Rightarrow2x+1-5x=0\)

\(\Rightarrow-3x=-1\Rightarrow x=\frac{1}{3}\)

Thay x=1/3 vào  \(x^2+\frac{1}{x^2}=\left(\frac{1}{3}\right)^2+\frac{1}{\left(\frac{1}{3}\right)^2}=\frac{1}{9}+1:\frac{1}{9}=\frac{82}{9}\)

Tương tự với \(x^3+\frac{1}{x^3}\)

16 tháng 1 2019

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta lại có: 

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x+y+z=1\)

Làm nốt

26 tháng 6 2017

Bài 3 : 

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)

Ta có : \(\frac{1}{1\times2}=\frac{2-1}{1\times2}=\frac{2}{1\times2}-\frac{1}{1\times2}=1-\frac{1}{2}\)

           \(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

            \(\frac{1}{99\times100}=\frac{100-99}{99\times100}=\frac{100}{99\times100}-\frac{99}{99\times100}=\frac{1}{99}-\frac{1}{100}\)

  \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{38\times39}\)

Ta có : \(\frac{1}{10\times11}=\frac{11-10}{10\times11}=\frac{11}{10\times11}-\frac{10}{10\times11}=\frac{1}{10}-\frac{1}{11}\)

            \(\frac{1}{11\times12}=\frac{12-11}{11\times12}=\frac{12}{11\times12}-\frac{11}{11\times12}=\frac{1}{11}-\frac{1}{12}\)

           \(\frac{1}{38\times39}=\frac{39-38}{38\times39}=\frac{39}{38\times39}-\frac{38}{38\times39}=\frac{1}{38}-\frac{1}{39}\)

           \(\frac{1}{39\times40}=\frac{40-39}{39\times40}=\frac{40}{39\times40}-\frac{39}{39\times40}=\frac{1}{39}-\frac{1}{40}\)

\(\Rightarrow B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\) 

           

26 tháng 6 2017

3. 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{38.39}+\frac{1}{39.40}\)

\(B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\)

8 tháng 4 2019

Dễ như này mà k làm đc

30 tháng 7 2020

Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 7 2020

Bài làm:

Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)

\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{1^2}+2=6\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

19 tháng 10 2021

Bạn ghi lại đề đi bạn