tìm GTLN :
E= x(1-2x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi.
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
a) \(x^2+2x+3\)
\(=x^2+2x+1+2\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Ta có:
\(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+1\right)^2+2\ge2\)
Vậy MinA = 2 khi
\(\left(x+1\right)^2+2=2\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(E=x\left(1-2x\right)=\frac{1}{2}.2x\left(1-2x\right)\le\frac{1}{2}.\frac{\left(2x+1-2x\right)^2}{4}=\frac{1}{2}.\frac{1}{4}=\frac{1}{8}\)
Dau '=' xay ra khi \(x=\frac{1}{4}\)
Vay \(E_{min}=\frac{1}{8}\)khi \(x=\frac{1}{4}\)