K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

ko ghi lại đề 

ta thấy : 2019 - 1 = 2018 

2020 - 2 = 2018 

2021 - 3 = 2018 

2022 - 4 = 2018 

=> x = 2018

thử lại :

2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022

= 1 + 1 = 1 + 1

2 = 2

22 tháng 2 2020

2020 - 2 = 2018 
2021 - 3 = 2018 
2022 - 4 = 2018 
=> x = 2018

thây zô mà thử lại

16 tháng 7 2019

\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2020}\)

\(\Leftrightarrow(\frac{x+4}{2019}+1)+(\frac{x+3}{2020}+1)=(\frac{x+2}{2021}+1)+(\frac{x+1}{2022}+1)\)

\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{x+2023}{2022}\)

\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)

\(\Leftrightarrow\left(x+2023\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2020}\right)=0\)

\(\Leftrightarrow x+2023=0\)

\(\Leftrightarrow x=-2023\)

16 tháng 7 2019

Nhầm đề :( Với bước thứ 4 sửa thành ( 1/2019 + 1/2020 - 1/2021 - 1/2022 ) 

21 tháng 8 2019

\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)

\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)

\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)

\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)

\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)

\(\Rightarrow-\frac{1}{12}\left(x-2018\right)=0\Leftrightarrow x=2018\)

4 tháng 9 2020

               Bài làm :

Ta có :

\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)

\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)

\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)

\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)

\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)

\(\text{Vì : }\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\ne0\Rightarrow x-2018=0\)

\(\Rightarrow x=2018\)

Vậy x=2018

3 tháng 1 2018

\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)

\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)

Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)

\(\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\)

Vậy ..

3 tháng 1 2018

=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)

=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018

=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0

=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0

=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )

=> x=-2017

Vậy x=-2017

k mk nha

9 tháng 4 2020

\(\frac{x+1}{2018}+\frac{x+1}{2019}=\frac{x+1}{2020}+\frac{x+1}{2021}\Leftrightarrow\frac{x+1}{2018}+\frac{x+1}{2019}-\frac{x+1}{2020}-\frac{x+1}{2021}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

KL: ................

28 tháng 3 2019

\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x+3}{2020}+\frac{x+4}{2021}\)

\(\Leftrightarrow\left(\frac{x+1}{2018}-1\right)+\left(\frac{x+2}{2019}-1\right)=\left(\frac{x+3}{2020}-1\right)+\left(\frac{x+4}{2021}-1\right)\)

\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}=\frac{x-2017}{2020}+\frac{x-2017}{2021}\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

\(\Leftrightarrow x-2017=0\)\(\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)

\(\Leftrightarrow x=2017\)

Vậy \(S=\left\{2017\right\}\)

19 tháng 6 2017

Ta có : \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)

\(\Rightarrow\frac{x-1}{2017}+\frac{x-2}{2018}=\frac{x-4}{2020}+\frac{x-3}{2019}\)

\(\Rightarrow1+\frac{x-1}{2017}+1+\frac{x-2}{2018}=1+\frac{x-4}{2020}+1+\frac{x-3}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}=\frac{2016+x}{2020}+\frac{2016+x}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}-\frac{2016+x}{2019}-\frac{2016+x}{2020}=0\)

\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\text{Mà : }\)\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

\(\text{Nên : }\) \(2016+x=0\)

\(\Rightarrow x=-2016\)

1 tháng 1 2018

Giỏi wá!!!!!!!!

25 tháng 2 2023

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)

\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)

\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)

\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)

\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)

\(x-2018\text{=}0\)

\(x\text{=}2018\)

\(Vậy...\)

11 tháng 2 2020

1.Tìm điều kiện xác định của phương trình:

a) 1x2+11x2+1 -4xx4xx =0 (1)

b) 1x211x21 -2020 (2)

c) x2020x2019x2020x2019 + x2021x2+1 (2)

Giải:

a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (1) xác định là x ≠ 0.

b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0

\(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1

Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.

c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.

11 tháng 2 2020

cảm ơn bạn nha .ha