K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Câu hỏi của Đinh Trần Nhật Minh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

3 tháng 6 2016

Đề sai cho mình sửa lại :

Cho 6 số nguyên dương a < b < c < d < m < n

Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)

Bài giải:

Ta có :a < b \(\Rightarrow\) 2a < a + b   ;  c < d \(\Rightarrow\) 2c < c + d  ;  m < n \(\Rightarrow\) 2m < m + n

Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó

Vậy : \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)  (đpcm)

do a<b<c<d<m<n

=> a+c+m < b+d+n

=> 2(a+c+m) < a+b+c+d+m+n

=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\)  => \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

24 tháng 9 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2.(a + c + m) < a + b + c + d + m + n

=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) (đpcm)

14 tháng 6 2015

ta có 

a<b<c=>3a<a+b+c

d<m<n=>3d<d+m+n

=>3a+3d<a+b+c+d+m+n

=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n

=>3(a+d)/a+b+c+d+m+n)<1

=>a+d/a+b+c+d+m+n<1/3  (đpcm)

copy

a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)

\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)

=>đpcm

14 tháng 6 2015

do a<b<c<d<m<n

=>a+b<c+d

a+b<m+n

=>a+b+a+b+a+b<a+b+c+d+m+n

=>a+b+a+b+a+b/a+b+c+d+m+n<a+b+c+d+m+n/a+b+c+d+m+n

<=>3(a+b)/a+b+c+m+d+n<1

=>a+b/a+b+c+d+m+b<1/3  (đpcm)

12 tháng 6 2016

Ta có :

a < b \(\Rightarrow\)  2a < a + b

c < d \(\Rightarrow\)  2c < c + d

m < n \(\Rightarrow\)   2m < m + n

Suy ra :

2 ( a + c + m ) < ( a + b + c + d +m +n )

Do đó :

\(\frac{a+c+m}{a+b+c+d+m+n}\)    < \(\frac{1}{2}\)

3 tháng 6 2016

a < b ⇒ 2a < a + b ; c < d ⇒ 2c < c + d ; m < n ⇒ 2m < m + n 

Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó 

\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )

27 tháng 5 2015

a < b \(\Rightarrow\) 2a < a + b   ;  c < d \(\Rightarrow\) 2c < c + d  ;  m < n \(\Rightarrow\) 2m < m + n

Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó

                      \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)  (đpcm)

2 tháng 10 2017

thank kiu bk nhìu nha Đinh Tuấn  Việt