Rút gọn:
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}\)+\(\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )
\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)
đkxđ: \(x\ge0;x\ne4\)
\(Q=\left[\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}\right]\div\left[\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)
\(Q=\left[\frac{x-\sqrt{x}+7+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\div\left[\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)
\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\div\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6\sqrt{x}}\)
\(Q=\frac{\left(x+9\right)\sqrt{x}}{6x}\)
\(Q=\frac{x\sqrt{x}+9\sqrt{x}}{6x}\)
đkxđ sửa tí thành \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)
Điều kiện xác định \(0\le x\ne4\)
\(C=\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}+\frac{18\sqrt{x}}{4-x}\right):\frac{x+9}{4-x}\)
\(=\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-18\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{x+9}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+4\sqrt{x}+4-\left(x-4\sqrt{x}+4\right)-18\sqrt{x}}{-\left(x+9\right)}\)
\(=\frac{10\sqrt{x}}{x+9}\)
\(B=\left(\frac{1}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}+\frac{x}{x\sqrt{x}-4\sqrt{x}}\right):\left(\frac{6-x}{\sqrt{x}+2}+2+\sqrt{x}\right)\)
\(B=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\left(\frac{6-x+2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)
\(B=\left(\frac{\sqrt{x}+2-2\sqrt{x}+4+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{6-x+2\sqrt{x}+4+x+2\sqrt{x}}{\sqrt{x}+2}\right)\)
\(B=\frac{6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{10+4\sqrt{x}}\)
\(B=\frac{6}{\sqrt{x}-2}\cdot\frac{1}{2\left(5+2\sqrt{x}\right)}\)
B = \(\frac{3}{\left(\sqrt{x}-2\right)\left(5+2\sqrt{x}\right)}\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2+\sqrt{x^2-4}\right)\left(x+2-\sqrt{x^2-4}\right)}\)
\(=\frac{\left(x^2+4+x^2-4+4x+2\sqrt{x^2-4}+x\sqrt{x^2-4}\right)+\left(x^2+4+x^2-4+4x-2\sqrt{x^2-4}-x\sqrt{x^2-4}\right)}{x^2+2x-x\sqrt{x^2-4}+2x+4-2\sqrt{x^2-4}+x\sqrt{x^2-4}+2\sqrt{x^2-4}-x^2+4}\)\(=\frac{4x^2+8x}{4x+8}=\frac{4x\left(x+2\right)}{4\left(x+2\right)}=x\)
\(DK:x\ne1,-1,-2\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)}{\left(x+2\right)^2-x^2+4}\)
\(=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{4x+8}\)
\(=\frac{4x^2+8x-8}{4x+8}\)
\(=\frac{x^2+2x-2}{x+2}\)