cho 3 so duong x,y,z thoa man x(4-xy-xz)<= 2xz(y+z)-y-3z.tim Min P=4x+y+3z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh một số bất đẳng thức phụ:
1. \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\ge3\)
2. \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\text{ (vừa chứng minh ở trên)}\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\)
3. \(x^2+y^2+z^2\ge xy+yz+zx\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+y+zx\right)\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow x+y+z\ge\sqrt{3\left(xy+yz+zx\right)}\ge\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{\left(x^2+y^2+z^2\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}{4\left(x+y+z\right)}\)
\(\ge\frac{3.\frac{1}{3}\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi x = y = z = 1.
C2: Áp dụng Co6si:
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)
Tương tự \(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
\(\Rightarrow\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)
(\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)\)
\(=3\left(xy+yz+zy\right)\ge9\)
\(\Rightarrow x+y+z\ge3\))
Dấu "=" xảy ra khi x = y = z = 1.
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
Ta có
xy + yz + xz \(\le\)x2 + y2 + z2
<=> 3(xy + yz + xz) \(\le\)(x + y + z)2 = 9
<=> xy + yz + xz \(\le\)3
Vậy GTLN là 3 đạt được khi x = y = z = 1
\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)
Đặt biểu thức trên là A, thay xyz = 2018, ta dược :
\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)
\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)
⇒ĐPCM
Please help me!!!!!!!!!!!
I feel this exercise is difficult!!!!!!