K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

BẠn tự vẽ hình nhé

Ta có: AC là cạnh đối diện góc D

           BD là cạnh đối diện góc C

Mà góc C < góc D cmt

=> BD < AC  định lý

26 tháng 10 2020

Vẽ tia Cx nằm trên nửa mặt phẳng bờ DC có chứa điểm A, sao cho ^DCx = ^ADC, Cx cắt AB tại E.

Hình thang AECD (AE // CD) có ^ADC = ^ECD nên AECD là hình thang cân, suy ra AC = ED và ^DAE = ^CEA (1)

Ta có  ^DBE > ^DAE (2) ( vì ^DBE là góc ngoài của ∆ABD)

và ^CEA > ^DEB     (3)

Từ (1), (2), (3) suy ra ^DBE > ^DEB

∆DBE có ^DBE > ^DEB => ED > BD

Ta có AC = ED suy ra AC > BD (đpcm)

a) Xét ΔBAD và ΔABC có 

AB chung

\(\widehat{BAD}=\widehat{ABC}\)(gt)

AD=BC(gt)

Do đó: ΔBAD=ΔABC(c-g-c)

Suy ra: BD=AC(hai cạnh tương ứng)

Xét ΔADC và ΔBCD có 

AD=BC(gt)

AC=BD(cmt)

DC chung

Do đó: ΔADC=ΔBCD(c-c-c)

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)

\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD(cmt)

nên ABCD là hình thang(Định nghĩa hình thang)

Hình thang ABCD(AB//CD) có AC=BD(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

28 tháng 7 2021

còn thiếu câu b

 

17 tháng 9 2021

Kẻ BE // AD ; E ∈ CD ⇒ ABED là hình bình hành

⇒ \(\widehat{D}=\widehat{ABE}\)  \(;\)  \(\widehat{A}=\widehat{BED}\)

Ta có: \(\widehat{A}=\widehat{BED}>\widehat{C}\) \(;\) \(\widehat{ABC}=\widehat{ABE}=\widehat{D}\)

Suy ra: \(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\) ( đpcm )

17 tháng 9 2021

Kẻ H // AD,H\(\in\)CD \(\Rightarrow\) ABHD là hình bình hành

\(\Rightarrow\)\(\widehat{ABH}=\widehat{D}\) ; \(\widehat{BHD}=\widehat{A}\)

Ta có:

\(\widehat{BHD}=\widehat{A}>\widehat{C}\) ; \(\widehat{ABC}>\widehat{ABH}=\widehat{D}\)

\(\Rightarrow\)\(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\)