K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2S=2+2^2+2^3+...+2^101

2S-S=2^101-1

S=2^101-2<2^101

hok tốt

22 tháng 8 2019

\(S=1+2+2^2+\cdot\cdot\cdot+2^{100}\)

\(\Rightarrow2S=2+2^2+2^3+\cdot\cdot\cdot+2^{101}\)

\(\Rightarrow2S-S=\left(2+\cdot\cdot+2^{101}\right)-\left(1+\cdot\cdot\cdot+2^{100}\right)\)

\(\Rightarrow S=2^{101}-1\)<\(2^{101}\)

\(\Rightarrow S\)<\(2^{101}\)

3 tháng 10 2017

câu a) vào đây xem nhé 

https://olm.vn/hoi-dap/question/122892.html

3 tháng 10 2017

k giống bạn ơi

31 tháng 10 2016

a) S= 1+2+22+...+29

2S=2+22+23+...+210

2S-S=(2+22+23+...+210)-(1+2+23+...+29)

S=210-1

5.28=2.2+1.28=1+22.28=1+210

=>S=5.28

b) A=1+2+22+....+2100

2A=2+22+23+...+2101

2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)

A=2101-1

=> A<2101

20 tháng 8 2017

Ta có:

\(S=1+3+3^1+3^2+...+3^{101}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow S\left(3-1\right)=3^{101}-1\Leftrightarrow S=\frac{3^{101}-1}{3-1}\)

\(\Rightarrow S=\frac{3^{101}-1}{3-1}< 3^{101}\)

18 tháng 5 2016

nhận xét :

\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.............

\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

vậy

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)

18 tháng 5 2016

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)

=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)

=>S<3/4(đpcm)

25 tháng 5 2021

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.

18 tháng 5 2016

Nhan xet:

\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{1}{4^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)

....

\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

Vay:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< \frac{3}{4}\)