rút gọn các biểu thức sau
a) \(\left(x+1\right)^2.\left(x-1\right)^2-3\left(x+1\right).\left(x-1\right)\)
b) \(5.\left(x+2\right).\left(x-2\right)-\frac{1}{2}.\left(6-8x\right)^2+17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x^2 + 2x + 1 - x^2 +2x - 1 -3x^2 +x - x - 1
= - 3x^2 +4x -1
b) =5x^2 + 10x - 10x - 20 - 1/2 .(36 - 96x + 64x^2 ) +17
= 5x^2 - 20 - 18 - 48 x - 32x^2 +17
= -27x^2 - 48x - 3
Chúc bn hok tốt a !
\(5\left(x+2\right)\left(x-2\right)-\frac{1}{2}\left(6-8x\right)^2+17\)
\(=5\left(x^2-4\right)-\frac{1}{2}\left(36-96x+64x^2\right)+17\)
\(=5x^2-20+30-32x^2+17=-27x^2+27\)
a: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
b: \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
a) \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=\left(4x\right)^2\)
\(=16x^2\)
b) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+2x^2-x-2\right)-\left(x^3-8\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)
\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)
b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)
\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)
c: \(C=x-4+\left|x-4\right|\)
=x-4+x-4
=2x-8
b, 5(x + 2) (x - 2 ) - 1/2 (6-8x)2 + 17
=5x +10 (x - 2) - 1/2 . 6 - 1/2 . 8x +17
=5x + 10x - 20 - 3 - 4x +17
=15x - 17 -4x + 17
=15x - 4x -17 + 17
=11x - 0 =11x
a, (x+1)2 - (x-1)2 - 3(x+1) (x-1)
=(x+1)+(x-1).(x+1)-(x-1) - 3x+3x -3
=2x.0 - 3x
=-3x
a
(x+1)-(x-1)-3(x+1)(x-1)
=(x+1)-(x-1)-3x+1.(x-1)
=(x+1)-(x-1)-3x+x-1
=x+1-x+1-3x+x-1
=x-x-3x+x+1+1-1
=-2x
b,
5(x+2)(x-2)-1/2(6-8x)^2+17
=5x+10(x-2)-1/2(36-64x2)+17
=5x+10x-20-18+32x2+17
=5x+10x-20-18+17+32x2
=15x-21+32x2
a
(x+1)-(x-1)-3(x+1)(x-1)
=(x+1)-(x-1)-3x+1.(x-1)
=(x+1)-(x-1)-3x+x-1
=x+1-x+1-3x+x-1
=x-x-3x+x+1+1-1
=-2x
b,
5(x+2)(x-2)-1/2(6-8x)^2+17
=5x+10(x-2)-1/2(36-64x2)+17
=5x+10x-20-18+32x2+17
=5x+10x-20-18+17+32x2
=15x-21+32x2
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)