K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

10 tháng 12 2020

Ơ mây dinh gút chóp iêm :)))

16 tháng 7 2020

A B O H D C

a. Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.

Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.

Suy ra AD là đường kính của (O).

b. Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc CAD = 90o

c. Ta có :\(AH \perp BC\Rightarrow HB=HC=\frac{BC}{2}=\frac{24}{2}=12\left(cm\right)\)

Áp dụng định lí Pitago vào tam giác vuông ACH ta có:

AC2 = AH2 + HC2

Suy ra: AH2 = AC2 - HC2 = 202 - 122 = 400 - 144 = 256

AH = 16 (cm)

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

\(AC^2=AH.AD\Rightarrow AD=\frac{AC^2}{AH}=\frac{20^2}{16}=25\left(cm\right)\)

Vậy bán kính của đường tròn (O) là: \(R=\frac{AD}{2}=\frac{25}{2}=12,5\left(cm\right)\)

Bán kính đường tron (O) bằng 12,5 cm

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

27 tháng 10 2017

Cái này thì giống trong sách giải rồi. Với lại câu a phải dùng ngôn ngữ toán học để làm chứ trình bày văn xuôi như vậy là dài dòng lắm.

16 tháng 8 2016

A B C D O H

a) Để cm AD là đường kính của (O) thì ta cần chứng minh ba điểm A,O,D thẳng hàng.

Vì ABC là tam giác cân tại A nên đường cao AH đi qua trung điểm BC và vuông góc với BC (1)

Mà : trong một đường tròn, bán kính đi qua trung điểm của dây thì vuông góc với dây đó (2)

Từ (1) và (2) suy ra đpcm

b) Vì ABDC là tứ giác nội tiếp nên góc ACD = 1/2sđ cung AD = 1/2 x 180 độ = 90 độ

c) Ta có : HC = 1/2BC = 12 cm

AH = \(\sqrt{AC^2-HC^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)

\(AH.AD=AC^2\Rightarrow AD=\frac{AC^2}{AH}=\frac{20^2}{16}=25\left(cm\right)\)

\(OD=\frac{1}{2}AD=12,5\left(cm\right)\)

 

15 tháng 8 2016

A)

Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

→ DOC = 2 * AOC (1)

Mà tam giác AOC cân → AOC = 180 - 2 / AOC (2)

Từ (1), (2) ta được DOC + AOC = 180 

B) Góc ACD là góc nội tiếp chắn nửa đường tròn

=> ACD = 90 độ 

C) HC = 1 / 2 * BC = 12

=> AH = căn (20- 122) = 16

Ta có Sin(BAO) = 12 / 20 => BAO = 36 . 86989765

=> AOB = 180 -  36 . 86989765 * 2 = 106.2602047

Ta có AB2 = AO2 + OB2 - 2 . OB . OA . cos (106.2602047)

↔ AO2  + OA- 2OA2 . cos (106.2602047) = 202

→ OA = 12.5

24 tháng 10 2021

a, ^BAC = 900 ( điểm thuộc đường tròn nhìn đường kính ) 

Theo Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{4R^2-R^2}=\sqrt{3}R\)

sinB = \(\frac{AC}{BC}=\frac{\sqrt{3}R}{2R}=\frac{\sqrt{3}}{2}\Rightarrow\)^B = 600

Vì ^C ; ^B phụ nhau => ^C = 900 - 600 = 300 

b, Vì AH là đường đường cao với D thuộc AH 

=> AD vuông BC (1) 

Vì AD vuông BC => AH = HD (2) 

Từ (1) ; (2) suy ra BC là đường trung trục AD 

Vì BC là đường trung trực => AC = AD 

=> tam giác ACD cân => ^CAD = ^CDA (3) 

Xét tam giác AHC vuông tại H có ^HAC và ^C phụ nhau 

=> ^HAC = 900 - 300 = 600 (4) 

Từ (3) ; (4) suy ra tam giác ADC đều 

c, ^ABC = 1/2 sđ cung AC ( góc nội tiếp chắn cung AC ) 

^CBD = 1/2 sđ cung CD ( góc nội tiếp chắn cung CD ) 

mà BC là đường trung trực nên AH = HD và BC vuông AD 

=> C là điểm chính giữa cung AD => cung AC = cung CD (5) 

Lại có ^AOC = 1/2 sđ cung AC ( góc ở tâm ) => ^AOC = ^ABC = 1/2 sđ cung AC 

^COD = 1/2 sđ cung CD ( góc ở tâm ) => ^COD = ^CBD = 1/2 sđ cung CD

Lại có (5) suy ra ^AOC = ^COD 

Xét tam giác OAE và tam giác ODE 

OA = OD = R 

OE _ chung 

^AOE = ^EOD ( cmt ) 

Vậy tam giác OAE = tam giác ODE 

=> ^OAE = ^ODE = 900

=> OA vuông AE 

Vậy AE là tiếp tuyến của đường tròn (O) 

d, bạn tính lần lượt EB ; CH ; BH ; EC xong nhân vào là ra nhé