Cho \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}=6\). Tìm GTLN của biểu thức
M=\(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{1-\sqrt{ab}}+1\right):\left(1-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-\frac{\sqrt{a}+1}{\sqrt{ab}+1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: ab khác 1; a,b \(\ge\)0
\(B=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1-ab+a+b+2ab}{1-ab}\)
\(=\frac{2\sqrt{a}+2\sqrt{b}\sqrt{ab}}{1-ab}:\frac{1+ab+a+b}{1-ab}\)
\(=\frac{2\sqrt{a}\left(1+b\right)}{1-ab}:\frac{\left(1+b\right)\left(1+a\right)}{1-ab}\)
\(=\frac{2\sqrt{a}}{1+a}\)
Trần Thanh PhươngNguyễn Văn ĐạtsVũ Minh TuấnvtkvtmLightning FarronNguyễn Minh TuNguyễn Thị Diễm QuỳnhấnDuong LeLê Thảo