có tồn tại hay k số nguyên x,y thỏa mãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Đề bài sai
Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là:
\(x^2-4x+y-6\sqrt{y}+13=0\)
ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
Vậy có duy nhất cặp số (x;y)=(2;9) thỏa mãn phương trình
ĐKXĐ: \(x\ge0\)
\(\sqrt{x}+4=m\sqrt{x}+5m\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x}=4-5m\)
- Với \(m=1\) không tồn tại x
- Với \(m\ne1\Rightarrow\sqrt{x}=\dfrac{4-5m}{m-1}\)
Do \(\sqrt{x}\ge0\Rightarrow\dfrac{4-5m}{m-1}\ge0\Rightarrow\dfrac{4}{5}\le m< 1\)
Lời giải:
ĐK: $x,y\geq 0$
Bình phương 2 vế thu được:
\(x+y+2\sqrt{xy}=2\)
\(\Rightarrow 2\sqrt{xy}=2-x-y\in\mathbb{Z}\)
Nếu $\sqrt{xy}\not\in\mathbb{Z}$ thì $xy\not\in\mathbb{Z}$ (vô lý). Do đó $\sqrt{xy}\in\mathbb{Z}\Rightarrow 2-x-y=2\sqrt{xy}$ là 1 số nguyên chẵn.
$\Rightarrow x+y$ chẵn. Mà $x+y=2-2\sqrt{xy}\leq 2; x+y\geq 0$ với mọi $x,y\geq 0$ nên $x+y=0$
$\Rightarrow x=y=0$ (do $x,y\geq 0$). Thử lại thấy không đúng.
Do đó không tồn tại $x,y$ thỏa mãn đề.
Lời giải:
ĐK: $x,y\geq 0$
Bình phương 2 vế thu được:
\(x+y+2\sqrt{xy}=2\)
\(\Rightarrow 2\sqrt{xy}=2-x-y\in\mathbb{Z}\)
Nếu $\sqrt{xy}\not\in\mathbb{Z}$ thì $xy\not\in\mathbb{Z}$ (vô lý). Do đó $\sqrt{xy}\in\mathbb{Z}\Rightarrow 2-x-y=2\sqrt{xy}$ là 1 số nguyên chẵn.
$\Rightarrow x+y$ chẵn. Mà $x+y=2-2\sqrt{xy}\leq 2; x+y\geq 0$ với mọi $x,y\geq 0$ nên $x+y=0$
$\Rightarrow x=y=0$ (do $x,y\geq 0$). Thử lại thấy không đúng.
Do đó không tồn tại $x,y$ thỏa mãn đề.