K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

undefined

26 tháng 8 2021

undefined

15 tháng 10 2023

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

15 tháng 10 2023

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

28 tháng 9 2021

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

NV
23 tháng 8 2021

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)

a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1

=2

b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\sqrt{x}-2\)

=3

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)

22 tháng 7 2023

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

22 tháng 7 2023

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

18 tháng 10 2021

\(d,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\\ e,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+\dfrac{3}{2}\cdot2\sqrt{x-1}-\dfrac{2}{5}\cdot5\sqrt{x-1}=4\\ \Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\\ \Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\\ f,ĐK:x\ge5\\ PT\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\\ \Leftrightarrow2\sqrt{x-5}=6\Leftrightarrow\sqrt{x-5}=3\\ \Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0

11 tháng 7 2023

1, \(\sqrt{4-4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)

\(\Leftrightarrow\left|2+x\right|=3\)

TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)

Pt trở thành:

\(2-x=3\) (ĐK: \(x\le2\) )

\(\Leftrightarrow x=2-3\)

\(\Leftrightarrow x=-1\left(tm\right)\)

TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)

Pt trở thành:

\(-\left(2-x\right)=3\) (ĐK: \(x>2\))

\(\Leftrightarrow-2+x=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{-1;5\right\}\)

11 tháng 7 2023

Bài 1 sai dấu em ơi