K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)

\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)

Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)

\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)

Vậy bài toán đã được chứng minh

17 tháng 8 2019

cảm ơn bạn và mik cx k cho bạn r

15 tháng 12 2017

Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :

- Tích các số lẻ có chứa các số 11 ; 17 ; 53

- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53

=> Tổng hai tích chia hết cho 9911.

15 tháng 11 2015

ai trả lời đúng mình **** cho

 

5 tháng 11 2015

xét chữ số tận cùng là ra

5 tháng 11 2015

Bạn xét chữ số tận cùng   

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi