K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Ta có: x(x + y) + y(x + y) = \(\frac{1}{48}+\frac{1}{24}\)

=> (x + y)2 = \(\frac{1}{16}\)

=> x + y = ±\(\frac{1}{4}\)

+) Xét x + y = \(\frac{1}{4}\)

x(x + y) = \(\frac{1}{48}\) => x.\(\frac{1}{4}\) = \(\frac{1}{48}\) => x = \(\frac{1}{12}\)

y(x + y) = \(\frac{1}{24}\) => y.\(\frac{1}{4}\) = \(\frac{1}{24}\) => y = \(\frac{1}{6}\)

+) Xét x + y = \(\frac{-1}{4}\)

x(x + y) = \(\frac{1}{48}\) => x.\(\frac{-1}{4}\) = \(\frac{1}{48}\) => x = \(\frac{-1}{12}\)

y(x + y) = \(\frac{1}{24}\) => y.\(\frac{-1}{4}\) = \(\frac{1}{24}\) => y = \(\frac{-1}{6}\)

Vậy...

17 tháng 9 2016

Ta có: 

\(x.\left(x+y\right)+y.\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)

=> \(\left(x+y\right)^2=\frac{1}{16}\)

=> \(\left[\begin{array}{nghiempt}x+y=\frac{1}{4}\\x+y=-\frac{1}{4}\end{array}\right.\)

+ Với \(x+y=\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{1}{4}=\frac{1}{12};y=\frac{1}{24}:\frac{1}{4}=\frac{1}{6}\)

+ Với \(x+y=-\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{-1}{4}=-\frac{1}{12};y=\frac{1}{24}:\frac{-1}{4}=-\frac{1}{6}\)

Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: \(\left(\frac{1}{12};\frac{1}{6}\right);\left(-\frac{1}{12};-\frac{1}{6}\right)\)

18 tháng 9 2016

bạn ơi tính từ vế trai sang vế  pải mà 

 

20 tháng 12 2021

hong biet lam

\(x-y=xy-1\)

\(\Rightarrow x-y-xy+1=0\)

\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=0\)

\(\Rightarrow\left(x+1\right)\left(1-y\right)=0\)

+) Với $x=-1$ thì ta có mọi $y$ thỏa mãn

+) Với $y=1$ thì ta có mọi $x$ thỏa mãn.

10 tháng 7 2021

Em cảm ơn!

9 tháng 9 2016

Xét các trường hợp sau đây. 
i/ Trường hợp y = 1. Khi đó ta có (x + 1)/(xy - 1) = (x + 1)/(x - 1) = 1 + 2/(x - 1). Số này là tự nhiên khi x - 1 là ước của 2, vì x nguyên dương nên hoặc x - 1 = 1 hoặc x - 1 = 2, suy ra x = 2 hoặc x = 3. Vậy (2 ; 1) và (3 ; 1) là hai cặp số cần tìm. 
ii/ Trường hợp y = 2. Khi đó ta có (x + 1)/(xy - 1) = (x + 1)/(2x - 1). Có thể chứng minh rằng 0 < (x + 1)/(2x - 1) < 1 với mọi x > 2, suy ra với x > 2 thì số (x + 1)/(2x - 1) không nguyên. Vậy chỉ cần kiểm tra x = 1 và x = 2, cũng dễ thấy x = 1, x = 2 là hai giá trị thỏa mãn. Vậy (1 ; 2) và (2 ; 2) là hai cặp số cần tìm. 
iii/ Trường hợp y >= 3. Khi đó ta có x(y - 1) >= 1.2, hay xy - x >= 2, suy ra xy - 1 >= x + 1, suy ra 0 < (x + 1)/(xy - 1) <= 1, suy ra số đã cho là tự nhiên khi (x + 1)/(xy - 1) = 1, hay x = 1 và y = 3. Vậy (1 ; 3) là hai cặp số cần tìm. 
Tóm lại, các cặp số phải tìm là (2 ; 1), (3 ; 1), (1 ; 2), (2 ; 2), (1 ; 3).

9 tháng 9 2016

x=0,y=1