Cho
a/b-c + b/c-a + c/a-b =0
Chứng minh
a/(b-c)^2+b /(c-a)^2 + c/(a-b)^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
Áp dụng bđt Cauchy:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)
\(N=\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)
Ta chứng minh \(\frac{3+a^2}{3-a}\ge2a\) với mọi \(0< a< 3\), thật vậy:
\(\Leftrightarrow3+a^2-2a\left(3-a\right)\ge0\)
\(\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)
Tương tự ta có: \(\frac{3+b^2}{3-b}\ge2b\); \(\frac{3+c^2}{3-c}\ge2c\)
Cộng vế với vế: \(\Leftrightarrow N\ge2\left(a+b+c\right)=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
làm xong rồi thì please_sign
áp dụng bđt huyền thoại \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) =\(\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\)
mà \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\) (tụ cm nhé )
\(\Rightarrow\ge\frac{\left(a+b+c^2\right)}{\frac{\left(ab+bc+ac\right)^2}{3}}=\frac{3\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}{\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)}\)
m,à \(\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2+ab+bc+ac+ab+bc+ac\right)^3}{3^3}\)
=\(\frac{\left(\left(a+b+c\right)^2\right)^3}{27}=27\)
\(\Rightarrow vt\ge\frac{27\left(a^2+b^2+c^2\right)}{27}=a^2+b^2+c^2\)
dau = khi a=b=c=1
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(a-c\right)\left(b-a\right)}\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ca-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)(1)
Tương tự ta cũng có :
\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}\)(2)
\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ca+bc-b^2}{\left(c-b\right)\left(a-b\right)\left(a-c\right)}\)(3)
Cộng theo vế (1), (2) và (3) :
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ca-c^2+c^2-bc+ab-a^2+a^2-ca+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)
\(=\frac{0}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}=0\) ( đpcm )