Giải phương trình nghiệm nguyên:
1) \(x^2+y^2=x+y\)
2) \(x+y=\sqrt{x}+\sqrt{y}\)
Cho tui hỏi là 2 pt này có giải được không ạ, thấy bạn tui trên fb hỏi bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
\(\left(x,y\right)\rightarrow\left(a,b\right)\)
\(+,a=0\Rightarrow b^2=b\Leftrightarrow a^2=a\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
\(tt:b=0\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)
\(+,a;b\ne0\Rightarrow a^2\ge a;b^2\ge b\left("="\Leftrightarrow a=1;b=1\right)ma:a^2+b^2=a+b\Rightarrow a=b=1\)
vậy:..
a strange way to solve...
1) \(x^2+y^2=x+y\)
\(\Leftrightarrow x^2-x+y^2-y=0\)
Coi phương trình trên là pt bậc 2 với ẩn là x.
+) Xét \(x=0\Leftrightarrow y=0\)( thỏa )
+) Xét \(x\ne0\)
Để pt có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow1^2-4\left(y^2-y\right)\ge0\)
\(\Leftrightarrow1-4y^2+4y\ge0\)
\(\Leftrightarrow4y^2-4y-1\le0\)
\(\Leftrightarrow\left(2y-1\right)^2\le2\)
\(\Leftrightarrow0\le\left(2y-1\right)^2\le2\)
Vì y nguyên nên \(2y-1\) nguyên
Do đó \(\left(2y-1\right)^2\in\left\{0;1\right\}\)
\(\Leftrightarrow2y-1\in\left\{0;1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}\left(loai\right)\\y=1\left(thoa\right)\end{matrix}\right.\)
Khi \(y=1\) ta có \(pt\Leftrightarrow x^2+1=x+1\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\left(chon\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;1\right);\left(0;1\right);\left(1;0\right)\right\}\)
Hết nghiệm chưa ?