cho a+b+c+d=0. cmr (b+d)(ac-bd)=(b+c)(ad-bc)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây nè bạn CMR: (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2? | Yahoo Hỏi & Đáp
ta có: \(a+b+c+d=0\)
\(\Leftrightarrow a\left(a+b+c+d\right)=0\)
\(\Leftrightarrow a^2+ab+ac+ad=0\)
\(\Leftrightarrow ad=-\left(a^2+ab+ac\right)\)
\(\Leftrightarrow ad-bc=-\left(a^2+ab+ac+bc\right)\)
\(\Leftrightarrow ad-bc=-\left(a+c\right)\left(a+b\right)\)
c/m tương tự ta đc: \(ab-cd=-\left(a+c\right)\left(a+d\right)\)
\(ac-bd=-\left(a+b\right)\left(a+d\right)\)
\(\Rightarrow\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)=-\left(a+c\right)^2\left(a+b\right)^2\left(a+d\right)^2\)
\(=\left[-\left(a+b\right)\left(a+c\right)\left(a+d\right)\right]^2\)
mà a;b;c;d là các số hữu tỉ nên:
\(-\left(a+b\right)\left(a+c\right)\left(a+d\right)\)là số hữu tỉ
=> \(\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)\) là bình phương của 1 số hữu tỉ =>đpcm