K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Èo bài dễ.

B1: Nhẩm nghiệm x=1

B2: Thế nghiệm vào từng căn nhé.

\(\hept{\begin{cases}\sqrt{x^2-3x+3}=\sqrt{1^2-3.1+3}=1\\\sqrt{x^2-3x+6}=2\end{cases}}\)

B3: Trừ đi cái vừa tính đc. và nhân liên hợp.

Bài giải:

ĐKXĐ: Tự tìm :3

\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)

\(\Leftrightarrow\left(\sqrt{x^2-3x+3}-1\right)+\left(\sqrt{x^2-3x+6}-2\right)=0\)

\(\Rightarrow\frac{x^2-3x+3-1}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+6-4}{\sqrt{x^2-3x+6}+2}=0\)

\(\Rightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)\)

Đến đây thì dễ rồi :3

=>\(\dfrac{x^2-3x+6-x^2+3x-6}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)

=>căn x^2-3x+6-căn x^2-3x+3=1

Đặt x^2-3x+3=a

=>căn a+3-căn a=1

=>a+3+a-2căn a^2+3a=1

=>2*căn (a^2+3a)=2a+3-1=2a+2

=>căn a^2+3a=a+1

=>a^2+3a=a^2+2a+1

=>a=1

=>x^2-3x+2=0

=>x=1 hoặc x=2

20 tháng 6 2023

Dòng đầu anh vận dụng gì cái jz ạ?

6 tháng 1 2021

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

28 tháng 9 2021

\(x+\sqrt{x}+\sqrt{x+3}+\sqrt{x^2+3x}=6\left(đk:x\ge0\right)\)

\(\Leftrightarrow x+\sqrt{x}+\sqrt{x+3}+\sqrt{x\left(x+3\right)}=6\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x+3}\left(\sqrt{x}+1\right)=6\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{x+3}\right)=6\)

Do \(x\ge0\Leftrightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+\sqrt{x+3}\ge\sqrt{x}+\sqrt{3}\ge\sqrt{x}+1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+\sqrt{x+3}=3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1=1\\\sqrt{x}+\sqrt{x+3}=6\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\left\{{}\begin{matrix}x=0\\\sqrt{x}+\sqrt{x+3}=6\left(VLý\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

 

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

NV
21 tháng 7 2021

c.

ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)

\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)

- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:

\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)

Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm

- Với \(x\le-5\) pt tương đương:

\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)

Do \(3-x>0\) pt trở thành:

\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)

\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)

\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))

\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)

\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)

NV
21 tháng 7 2021

a.

Kiểm tra lại đề, pt này không giải được

b.

ĐKXĐ: \(x\ge0\)

\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow...\)

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé