\(A=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right).\left(\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}:\left(\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\left(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\right)\)
\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}.\dfrac{2+\sqrt[3]{x}}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\dfrac{\sqrt[3]{x}-2}{\sqrt[3]{x}}\)
\(=\sqrt[3]{x}-2+\sqrt[3]{x}=2\sqrt[3]{x}-2\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2-\sqrt[3]{x^2}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}\cdot\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\)
\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(2+\sqrt[3]{x}\right)}{2-\sqrt[3]{x^2}}+\dfrac{\sqrt[3]{x^2}\cdot\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)
\(=1+\sqrt[3]{x}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=\left(x-\sqrt{x}\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=2x\sqrt{x}+x-2x-\sqrt{x}+2\sqrt{x}+2\)
\(=2x\sqrt{x}-x+\sqrt{x}+2\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)
c: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}+5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}+8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
Đặt \(\sqrt{x-1}=a\), khi đó ta có:
\(P=\left(\dfrac{\sqrt{x-1}}{3+\sqrt{x-1}}+\dfrac{x+8}{10-x}\right):\left(\dfrac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\left[\dfrac{\sqrt{x-1}}{\sqrt{x-1}+3}+\dfrac{\left(x-1\right)+9}{9-\left(x-1\right)}\right]:\left[\dfrac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\dfrac{1}{\sqrt{x-1}}\right]\)
\(=\left(\dfrac{a}{a+3}+\dfrac{a^2+9}{9-a^2}\right):\left(\dfrac{3a+1}{a^2-3a}-\dfrac{1}{a}\right)\)
\(=\dfrac{a\left(3-a\right)+\left(a^2+9\right)}{\left(3+a\right)\left(3-a\right)}:\dfrac{\left(3a-1\right)-\left(a-3\right)}{a\left(a-3\right)}\)
\(=\dfrac{3a-a^2+a^2+9}{\left(3+a\right)\left(3-a\right)}:\dfrac{3a-1-a+3}{a\left(a-3\right)}\)
\(=\dfrac{3a+9}{\left(3+a\right)\left(3-a\right)}:\dfrac{2a+4}{a\left(a-3\right)}\)
\(=\dfrac{3\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}.\dfrac{a\left(a-3\right)}{2\left(a+2\right)}\)
\(=\dfrac{-3a}{2\left(a+2\right)}\).
Suy ra: P \(=\dfrac{-3\sqrt{x-1}}{2\left(\sqrt{x-1}+2\right)}\).
Ta lại có: \(x=\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)
\(=\sqrt[4]{\dfrac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)^2}}-\sqrt[4]{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{\dfrac{\sqrt{2}+1}{\sqrt{2}-1}}-\sqrt{\dfrac{\sqrt{2}+1}{\sqrt{2}-1}}\)
\(=\sqrt{\dfrac{\left(\sqrt{2}+1\right)^2}{2-1}}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{2-1}}\)
\(=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)\)
\(=2\).
Suy ra: \(P=\dfrac{-3\sqrt{2-1}}{2\left(\sqrt{2-1}+2\right)}=\dfrac{-3}{2.3}=-\dfrac{1}{2}\).
2)
ĐK: \(x\ge0;x\ne4\)
Biểu thức trở thành:
\(\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{a-4}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+2\sqrt{a}+3\sqrt{a}+6}{a-4}-\dfrac{a-2\sqrt{a}-\sqrt{a}+2}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{a-4}\\ =\dfrac{4\sqrt{a}+8}{a-4}\\ =\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\\ =\dfrac{4}{\sqrt{a}-2}\)
1:
\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+2\sqrt{x}-8-x-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{-4}\)
\(=\dfrac{-2\sqrt{x}-11}{-4}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\left(2\sqrt{x}+11\right)\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2+\sqrt[3]{x}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}-2\sqrt[3]{x}+2\sqrt[3]{x}}{\sqrt[3]{x}-2}.\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)
\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2+\sqrt[3]{x}}.\dfrac{2+\sqrt[3]{x}}{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}+\dfrac{\sqrt[3]{x}.\sqrt[3]{x}}{\sqrt[3]{x}-2}.\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)
\(=2-\sqrt[3]{x}+\sqrt[3]{x}=2\)