K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

1>1/1*2

1/22>1/2*3

1/32>1/3/4

.....................

1/1002>1/100*101

=>1-1/22-...-1/1002>1/1*2-1/2*3-.....-1/100*101=1-1/2-1/2+1/3-1/3+......-1/100+1/101=1/101

                vậy 1-1/22-....-1002

   study well

 k nha

 ai k đúng cho mk thì mk trả lại gấp đôi và ngược lại

   ai ghé qua nhớ để lại 1 k  đúng 

 ủng hộ mk nha

30 tháng 3 2017

ko know

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

14 tháng 3 2016

S<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

S<1-1/100<1 ( bước này làm hơi tắt, muốn biết rõ thì tích mk mk giải cho)

Dễ thấy S>0

Ta có 0<S<1

=> S ko là snt

Ủng hộ mk nha

14 tháng 3 2016

1/22<1/1*2

1/32<1/2*3

. . .

1/992<1/89*99

1/1002<1/99*100

=> S<1/1*2+1/2*3+1/3*4+1/4*5+...+1/89*99+1/99*100

=> S<1-1/2+1/2-1/3+...+1/89-1/99+1/99-1/100

=> S<1-1/100

=> S<99/100

Mà 99/100<1

Vậy S không phải số nguyên.

9 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

10 tháng 4 2017

VÌ \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...........;\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{99\cdot100}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)\(\Rightarrow S< 1\)

VÌ \(\frac{1}{2\cdot3}< \frac{1}{2\cdot2};.....;\frac{1}{98\cdot99}< \frac{1}{99\cdot99}\)

\(\Rightarrow\)\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+......+\frac{1}{98\cdot99}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}< S\)

\(\Rightarrow\frac{49}{100}< S< 1\)

\(K\)\(mk\)\(nha\)

21 tháng 9 2015

a) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)=> \(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=> \(2.A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)=> \(1-A=1-\left(1-\frac{1}{2^{10}}\right)=\frac{1}{2^{10}}>\frac{1}{2^{11}}\)=> đpcm

b) Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Vì \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)nên \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\)

=> \(B<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)

=> 1 - B > \(1-\left(1-\frac{1}{100}\right)=\frac{1}{100}\) => đpcm

28 tháng 4 2017
hi 
minh cung ko 
biet lam 

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)

\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A>0\) ( đpcm )

Bài này phải làm như thế này nha lần trước tui làm nhầm sorry

Study well 

7 tháng 8 2019

uk cám ơn bn nhiều