K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)

=>m^2<>2m-2

=>m^2-2m+2<>0(luôn đúng)

Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)

=>2m=2m+2 và 2m-2=m^2+m

=>m^2+m-2m+2=0 và 0m=2(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)

=>m^2=2m-2 và 2m<>2m+2

=>0m<>2 và m^2-2m+2=0(loại)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)

=>m^2+m<>m^2-4

=>m<>-4

Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)

=>m^2+m=m^2-4 và 2m=5m+10

=>m=-4 và m=-10/3(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)

=>m=-4 và m<>-10/3(nhận)

c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)

=>-2m-4<>m-1

=>-3m<>3

=>m<>-1

Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>2m+4=-m+1 và 2-2m<>-3m+1

=>3m=-3 và m<>-1

=>m=-1 và m<>-1(loại)

Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>m=-1

a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)

Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0

=>y=1 và x=1

Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

Nếu m^2-2m-2=0 thì hệ vô nghiệm

Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)

c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m

=>(3m+1)x=m+1 và y=(m+2)x+m-1

Nếu m=-1/3 thì hệ vô nghiệm

Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)

30 tháng 12 2023

a: \(4x-2=m\left(mx-1\right)\)(1)

=>\(m^2x-m=4x-2\)

=>\(x\left(m^2-4\right)=m-2\)

=>x(m-2)(m+2)=m-2

TH1: m=2

Phương trình (1) sẽ trở thành \(x\left(2-2\right)\left(2+2\right)=2-2\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (1) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-2-2\)

=>0x=-4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (1) sẽ trở thành: \(x\left(m-2\right)\left(m+2\right)=m-2\)

=>x(m+2)=1

=>\(x=\dfrac{1}{m+2}\)

f: \(m^2x-3=4x-\left(m-1\right)\)(2)

=>\(m^2x-4x=-m+1+3\)

=>\(x\left(m^2-4\right)=-m+2\)

=>\(x\left(m-2\right)\left(m+2\right)=-\left(m-2\right)\)

TH1: m=2

Phương trình (2) sẽ trở thành: \(x\left(2-2\right)\left(2+2\right)=-\left(2-2\right)\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (2) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-\left(-2-2\right)\)

=>0x=4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (2) sẽ là: x(m-2)(m+2)=-(m-2)

=>x(m+2)=-1

=>\(x=-\dfrac{1}{m+2}\)

g: \(m^3x-4=m^2+4mx-4m\)(3)

=>\(m^3x-4mx=m^2-4m+4\)

=>\(x\left(m^3-4m\right)=\left(m-2\right)^2\)

=>\(x\cdot m\cdot\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

TH1: m=2

Phương trình (3) sẽ trở thành: \(x\cdot2\cdot\left(2+2\right)\left(2-2\right)=\left(2-2\right)^2\)

=>0x=0(luôn đúng)

TH2: m=0

Phương trình (3) sẽ trở thành:

\(x\cdot0\cdot\left(0+2\right)\left(0-2\right)=\left(0-2\right)^2\)

=>0x=4

=>\(x\in\varnothing\)

TH3: m=-2

Phương trình (3) sẽ trở thành;

\(x\cdot\left(-2\right)\left(-2+2\right)\left(-2-2\right)=\left(-2-2\right)^2\)

=>0x=16

=>\(x\in\varnothing\)

TH4: \(m\notin\left\{0;2;-2\right\}\)

Phương trình (3) sẽ trở thành:

\(x\cdot m\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

=>\(x=\dfrac{\left(m-2\right)^2}{m\left(m+2\right)\left(m-2\right)}=\dfrac{m-2}{m\left(m+2\right)}\)

9 tháng 12 2021

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

10 tháng 2 2018

\(mx^2-2=4x+m\)

\(\Leftrightarrow mx^2-4x=m+2\)

\(\Leftrightarrow x.\left(mx-4\right)=m+2\)

nếu \(mx-4\ne0\Leftrightarrow m\ne\frac{4}{x}\)\(\Leftrightarrow x\ne\pm1\) thì phương trình trên có 1 nghiệm duy nhất 

\(x=\frac{m+2}{mx-4}\)

vậy khi \(m\ne\frac{4}{x}\)  thì phương trình đã cho có nghiệm duy nhất  \(x=\frac{m+2}{mx-4}\)

+) nếu \(m=\frac{4}{x}\) thì phương trình có dạng  \(0x=m+2\) ( pt này có vô số nghiệm )

vậy khi \(m=\frac{4}{x}\)thì pt đã cho có vô số nghiệm

nghiệm tổng quát của phương trình là \(x\in R\)

10 tháng 2 2018

Tham khảo bài này :

 4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất 
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha? 
1> PT<=> (m^2+1)x -2m+3=0 
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m ) 
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1) 
2> PT có dạng : -m^2 - 3m = -2m + 6 
<=> -m^2 - m -6 =0 
vô nghiệm với mọi giá trị của m 
=> PT đã cho luôn vô nghiệm với mọi giá trị của m 
3> PT <=> (m-1)x -m^2-m+2 = 0 
TH1 : m-1# 0 <=> m # 1 
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2 
TH2 : m-1=0 <=> m = 1 
thì PT có dạng : 0x+0 = 0 
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý ) 
Kết luận : 
Với m # 1 : PT có nghiệm duy nhất x = m+2 
Với m=1 : PT có vô số nghiệm 
4> (m^2-3m+2)x -m^2+m = 0 
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2 
- Nếu m=1 thì PT có dạng : 0x+0=0 
=> PT có vô số nghiệm 
- Nếu m=2 thì PT có dạng : 0x-2=0 
=> PT vô nghiệm 
TH2 : m^2-3m+2 # <=> m # 1 và m # 2 
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2) 
Kết luận : 
Với m=1 : PT có vô số nghiệm 
Với m=2 :PT vô nghiệm 
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2) 
 

NV
15 tháng 7 2021

ĐKXĐ: \(x\ne-1\)

Ta có:

\(\dfrac{mx-m-3}{x+1}=1\)

\(\Rightarrow mx-m-3=x+1\)

\(\Leftrightarrow\left(m-1\right)x=m+4\)

- Với \(m=1\) pt trở thành: \(0=5\) (ktm) \(\Rightarrow\) pt vô nghiệm

- Với \(m=-\dfrac{3}{2}\) pt trở thành: 

\(-\dfrac{5}{2}x=\dfrac{5}{2}\Rightarrow x=-1\) (ktm ĐKXĐ) \(\Rightarrow\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\Rightarrow x=\dfrac{m+4}{m-1}\)

Vậy:

- Với \(m=\left\{-\dfrac{3}{2};1\right\}\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\) pt có nghiệm duy nhất \(x=\dfrac{m+4}{m-1}\)