So sanh
\(10^{20}\)va \(9^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy B=20^10-1/20^10-3 là phân số lớn hơn 1.
Theo tính chất nếu a/b>1 thì a/b > a+n/b+n ( n khác 0 )
Ta có : 20^10-1/20^10-3 > 20^10-1+2/20^10-3+2
<=> B > 20^10+1/20^10-3 = A
<=> B > A
Vậy B > A
Ta có:\(2^{36}\)và \(3^{27}\)
\(2^{36}=\left(2^4\right)^9=16^9\)
\(3^{27}=\left(3^3\right)^9=27^9\)
Vì \(16< 27\Rightarrow16^9< 27^9\)
Vậy....
b,\(9^{20}\)và \(9999^{10}\)
\(9^{20}=\left(9^2\right)^{10}=81^{10}\)
\(9999^{10}\)
Vì \(81< 9999\Rightarrow81^{10}< 9999^{10}\)
Vậy ...
c,\(54^4\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
Vì \(54< 9261\Rightarrow54^4< 9261^4\)
Vậy...
có :
1020 = (102)10 = 10010
9010 < 10010
=> 1020 > 9010
A = 387420490 ; B = 1000000001
vậy B lớn hơn A
\(99^{20}< 9999^{10}\)
\(54^4< 21^{12}\)
\(71^5< 17^{20}\)
\(2^{30}+3^{20}+4^{30}>3\times24^{10}\)
Trả lời
Nhìn là thừa biết
1020 > 910 rồi
Vì thừa số với số mũ của số thứ nhất đều lớn hơn số thứ 2
\(10^{20}=\left[10^2\right]^{10}=100^{10}\)
Mà 100 > 9 => \(100^{10}>9^{10}\)hay \(10^{20}>9^{10}\)