\(\frac{x-7}{1990}\)+\(\frac{x-9}{1986}\)+\(\frac{x+1}{1204}\)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pạn -1 vào mỗi phân số là xong. Rùi ra x\(\frac{x-2015}{1986}\)+\(\frac{x-2015}{1988}\)+ \(\frac{x-2015}{1990}\)+...+\(\frac{x-2015}{x1996}\)-\(\frac{x-2015}{29}\)-\(\frac{x-2015}{27}\)-...\(\frac{x-2015}{19}\)=0
<=>(x-2015)(\(\frac{1}{1986}\)+\(\frac{1}{1988}\)+... -\(\frac{1}{19}\))=0...(mà \(\frac{1}{1986}\)+...- \(\frac{1}{19}\) khác 0)
=>x-2015=0
<=> x=2015
x−17/1990+x−21/1986+x+1 1004=4⇔x−17/1990−1+x−21/1986−1+x+1/1004−2=0
⇔x−2007/1990+x−2007/1986+x−2007/1004=0
⇔(x−2007)(1/1990+1/1986+1/1004)=0
⇔x−2007=0⇔x=2007
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a, <=> (x-2)2=25
<=>x-2=5 hoặc x-2=-5
<=>x=7 hoặc x=-3
c,<=>(x2)2-16=0
<=>(x2)2=16
<=>x2=4
<=>x=2 hoặc x=-2
\(\frac{1+0,6-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{\frac{3}{3}+\frac{3}{5}-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{3.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}{8.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}=\frac{3.1}{8.1}=\frac{3}{8}\)
\(\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}=\frac{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}}{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}+\frac{7}{16}}=\frac{1.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}{7.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}=\frac{1.1}{7.1}=\frac{1}{7}\)
=>\(\frac{3}{8}-\frac{1}{7}=\frac{13}{56}\)
\(\frac{4}{9}x\frac{3}{7}+\frac{5}{7}x\frac{4}{9}-\frac{4}{9}x\frac{1}{7}\)
\(=\frac{4}{9}x\left(\frac{3}{7}+\frac{5}{7}-\frac{1}{7}\right)\)
\(=\frac{4}{9}\)
\(\frac{4}{9}\times\frac{3}{7}+\frac{5}{7}\times\frac{4}{9}-\frac{4}{9}\times\frac{1}{7}\)
\(=\frac{4}{9}\times\left(\frac{3}{7}+\frac{5}{7}-\frac{1}{7}\right)\)
\(=\frac{4}{7}\times1\)
\(=\frac{4}{7}\)