\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\frac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\frac{6+2\sqrt{5}}{4}=8-\frac{3+\sqrt{5}}{2}=\frac{13-\sqrt{5}}{2}\)
\(B=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8+2\sqrt{15}+8-2\sqrt{15}}{2}=8\)
a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)
\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)
b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)
\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)
c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)
\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)
d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)
\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)
Trục căn thức lên rồi tính như bình thường thôi.
Bạn chưa hiểu thì nhắn tin cho mình, mình làm cho.
Chúc bạn học tốt nhea. =)
a) \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
=\(\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
=\(\frac{8+2\sqrt{15}+8-2\sqrt{15}}{2}\)
=\(\frac{16}{2}=8\)
Tạm thời mih bận nên chỉ kịp lm 1 câu thôi, khi nao có time mih lm típ nha
\(A=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\\ A=\frac{3+2\sqrt{15}+5}{3-5}+\frac{5-2\sqrt{15}+3}{5-3}\\ A=\frac{3+2\sqrt{15}+5-\left(5-2\sqrt{15}+3\right)}{-2}\\ A=\frac{4\sqrt{15}}{-2}=-2\sqrt{15}\)
\(B=\frac{\sqrt{5}\left(5+2\sqrt{5}\right)}{\left(\sqrt{5}\right)^2}+\frac{\sqrt{3}\left(3+\sqrt{3}\right)}{\left(\sqrt{3}\right)^2}-\left(\sqrt{5}+\sqrt{3}\right)\\ B=\frac{5\left(\sqrt{5}+2\right)}{5}+\frac{3\left(\sqrt{3}+1\right)}{3}-\left(\sqrt{5}+\sqrt{3}\right)\\ B=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}\\ B=3\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
TRẢ LỜI :
\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}=3\)
Study
Well
= \(\sqrt{\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3-\sqrt{5}\right)^2}}+\sqrt{\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)^2}}\)
=\(\frac{\sqrt{9-5}}{3-\sqrt{5}}+\frac{\sqrt{9-5}}{3+\sqrt{5}}\)
=\(\frac{6+2\sqrt{5}+6-2\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\frac{12}{4}=3\)