K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Sorry sai đề đề đúng là ntn x1-3x1x2-m(x2+9)=0

2 tháng 8 2017

Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1  0 và

∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24

Phương trình có hai  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0

Áp dụng định lý Vi – ét ta có x 1 + x 2   = 2 ( m + 4 ) ;   x 1 . x 2 = m 2   –   8

Ta có:

A = x 1 + x 2 − 3 x 1 x 2

= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 =  − 3 m 2 − 2 3 m − 32 3

= − 3 m − 1 3 2 + 97 3

Nhận thấy A ≤ 97 3  và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3  (TM)

Vậy giá trị lớn nhất của A là 97 3 khi  m = 1 3

Đáp án: A

NV
21 tháng 4 2022

\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)

\(\Leftrightarrow3m^2=1\)

\(\Leftrightarrow m^2=\dfrac{1}{3}\)

\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)

21 tháng 4 2022

xét delta 

m2 + 4m2 + 4 = 5m2 + 4 > 0 

=> phương trình luôn có 2 nghiệm x1x2

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\) 

x12 + x22 = 3 

<=> ( x1 +x2 )2 - 2x1x2 = 3 

<=> m2 + 2m2 + 2 = 3 

<=> 3m2 = 1 

=> m2 = \(\dfrac{1}{3}\)

=> m = +- \(\dfrac{1}{\sqrt{3}}\)

 

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

22 tháng 7 2017

Phương trình có hai nghiệm

B = 2 ( x 1 2 + x 2 2 ) + 16 − 3 x 1 x 2

= 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 + 16 − 3 x 1 x 2 = 2 ( 2 m + 2 ) 2 − 4 ( m 2 + 2 ) + 16 − 3 ( m 2 + 2 ) = 4 m 2 + 16 m + 16 − 3 ( m 2 + 2 ) = 2 m + 4 − 3 ( m 2 + 2 ) = − 3 m 2 + 2 m − 2

Xét hàm số y = − 3 m 2 + 2 m − 2 với  m ≥ 1 2

Bảng biến thiên

 

Suy ra giá trị m a x m ≥ 1 2 y = − 7 4  khi  m = 1 2

Vậy giá trị lớn nhất của biểu thức B là - 7 4 khi  m = 1 2

Đáp án cần chọn là: B

a: Δ=(m+1)^2-4m=(m-1)^2>=0

=>Phương trình luôn có nghiệm

b: x1^2+x2^2+3x1x2=5

=>(x1+x2)^2+x1x2=5

=>(m+1)^2+m=5

=>m^2+3m-4=0

=>(m+4)(m-1)=0

=>m=1 hoặc m=-4

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

4 tháng 6 2021

PT có 2 nghiệm phân biệt `<=> \Delta'>0`

`<=>m^2-(m^2+m-5)>0`

`<=>-m+5>0`

`<=> m < 5`

Viet: `x_1+x_2=2m`

`x_1x_2=m^2+m-5`

Theo đề bài: `2(x_1^2+x_2^2)-3x_1x_2=29`

`<=>2[(x_1+x_2)^2-2x_1x_2]-3x_1x_2=29`

`<=>2(x_1+x_2)^2-7x_1x_2=29`

`<=>2.4m^2 - 7(m^2+m-5)=29`

`<=>` \(\left[{}\begin{matrix}m=6\left(L\right)\\m=1\left(TM\right)\end{matrix}\right.\)

Vậy `m=1`.