Cho tam giác ABC vuông tại A, tanB= \(\frac{4}{5}\), BC= 60cm. Tính AB, AC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NN
0
2
1
AH
Akai Haruma
Giáo viên
25 tháng 5 2023
Lời giải:
Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$
$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago
$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$
$\Rightarrow \widehat{C}=53,13^0$
TN
1
7 tháng 10 2021
\(tanB=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{BC}=\frac{3}{4}\)
Ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AB^2=BC^2-AC^2=\frac{16}{9}AC^2-AC^2=\frac{7}{9}AC^2=144\)
\(\Rightarrow AC=13,6\)
\(\Rightarrow BC=18,1\)
4 tháng 11 2021
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)
ML
1
\(tanB=\frac{4}{5}\)
\(\Leftrightarrow\frac{AC}{AB}=\frac{4}{5}\Leftrightarrow\frac{AC}{4}=\frac{AB}{5}\Leftrightarrow\frac{AC^2}{16}=\frac{AB^2}{25}\)(1)
Áp dụng định lý Pytago:
\(AB^2+AC^2=BC^2=3600\)
Theo (1), áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{AC^2}{16}=\frac{AB^2}{25}=\frac{AC^2+AB^2}{16+25}=\frac{3600}{41}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AC^2=\frac{57600}{41}\\AB^2=\frac{90000}{41}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=37,48\\AB=46,85\end{matrix}\right.\)
Vậy...