Tìm GTLN, GTNN(nếu có) của: A = 2x2 + 4x + 6.
Ai nhanh nhất mik tick cho!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
a: Ta có: \(A=2x^2+12x+11\)
\(=2\left(x^2+6x+\dfrac{11}{2}\right)\)
\(=2\left(x^2+6x+9-\dfrac{7}{2}\right)\)
\(=2\left(x+3\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=-3
\(A=2\left(x^2+6x+36\right)-61=2\left(x+6\right)^2-61\ge-61\\ A_{min}=-61\Leftrightarrow x=-6\\ B=-\left(x^2-18x+81\right)+100=-\left(x-9\right)^2+100\le100\\ B_{max}=100\Leftrightarrow x=9\)
/x-3/ lon hon =0 voi moi x
=>/x-3/+6 lon hon bang 6
(/x-3/+6)^2 lon hon bang 36
(/x-3/+6)^2-7 lon hon bang 29
vay GTNN =29
tich minh nha
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
Ta có:
A = 2x2 + 4x + 6
<=>\(\frac{A}{2}=x^2+2x+1+2\)
<=>\(\frac{A}{2}=(x+1)^2+2\)
<=>\(A=2(x+1)^2+4\)≥4. Vì:\(2(x+1)^2\ge0\)=> Amin= 4 <=> \(2(x+1)^2=0\)<=> x = -1.
Vậy:.......................