Tìm số dư khi 3^100 chia cho 4.
Cần gấp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tôi làm luôn nhé ko ghi đề bài
A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)
A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)
A=2+2^2.7+...+2^99.7
A=2+(2^2+...+2^99).7 ko chia hết cho 7
Vậy A :7 thì dư 2
Số chia 3 dư 1 chia 4 dư 2 chia 5 dư 3 thì chia 60 dư 1.
Vậy số cần tìm là 61
Do a chia 7 dư 4; a chia 9 dư 6 nên
\(\begin{cases}a-4⋮7\\a-6⋮9\end{cases}\)\(\Rightarrow\begin{cases}a-4+7⋮7\\a-6+9⋮9\end{cases}\)\(\Rightarrow\begin{cases}a+3⋮7\\a+3⋮9\end{cases}\)\(\Rightarrow a+3\in BC\left(7;9\right)\)
Mà (7;9)=1 nên \(a+3⋮63\)
Vậy số dư của a khi chia cho 63 là 63 - 3 = 60
ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.
=>Số số hạng của mũ là:
100-1:1=100
mà 100 chia hết cho 4
=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0
Gọi số tự nhiên cần tìm là : x ( x thuộc N* ; 200 < x < 400)
Khi đó :
x chia 4 dư 3 => x + 1 chia hết cho 4
x chia 5 dư 4 => x + 1 chia hết cho 5
x chia 6 dư 5 = > x + 1 chia hết 6
Nên x + 1 thuộc BC(4;5;6) và 201 < (x + 1) < 401
=> BCNN(4;5;6) = 60
=> BC(4;5;6) = B(60) = {0;60;120;180;240;300;360}
Vậy x + 1 = {240;300;360}
=> x ={239;299;359}
bai nay tớ làm qua rồi nên giải phái của bạn hoàng là đúng
Gọi số cần tìm là a (a \(\ne\) 0)
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5;7) = 35
=> a = 26
Vậy số phải tìm là 26
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Ta có: \(9=1\left(mod4\right)\)
\(\Rightarrow9^{50}=1^{50}\left(mod4\right)\)
Vậy \(3^{100}\)chia 4 dư 1
Ta có : 3100 = 320.5 = (320)5 = (....01)5 = ....01
=> 3100 có 2 chữ số tận cùng 01
mà 1 số chia hết cho 4 khi 2 chữ số tận cùng của chúng chia hết cho 4
mà ...01 : 4 dư 1
=> 3100 : 4 dư 1
Vậy số dư của 3100 khi chia cho 4 là 1