K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

=(502-492)+...+(22-12)

=(50-49)(50+49)+(48-47)(48+47)+...+(2-1)(2+1)

=1.99+1.95+1.91+...+1.3

=99+95+91+...+3

=(99+3)+(95+7)+...+

6 tháng 8 2019

         \(50^2-49^2+48^2-47^2+...+2^2-1^2\)

\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=99.1+95.1+...+3.1\)

\(=99+95+...+3\)

\(=3+...+95+99\)

Từ 3 đến 99 có: \(\left(99-3\right):4+1=25\left(\text{số hạng}\right)\)

Tổng là: \(\frac{\left(99+3\right)\times25}{2}=1275\)

11 tháng 5 2022

banhoeohoyeugianroi

12 tháng 3 2017

Hỏi đáp Toán

26 tháng 1 2023

So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2

26 tháng 1 2023

S=

=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50

P=

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50=1

vậy s/p = 1/50

14 tháng 5 2015

P = 1/49+2/48+3/47+...+48/2+49/1

Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50

Đưa ps cuối lên đầu

P=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50.S

VậyS/P=1/50
 

14 tháng 4 2017

1/50

 chúc bạn học tốt :-)))

11 tháng 5 2022

​cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1bucminh

26 tháng 10 2019

\(50^2-49^2+48^2-47^2+...+2^2-1\)

\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48-47\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=99+95+...+3\)

\(=\frac{\left(99+3\right)\left[\left(99-3\right):4+1\right]}{2}\)

\(=\frac{102.\left(24+1\right)}{2}=\frac{102.25}{2}=1275\)

26 tháng 10 2019

thanks bạn nhoaaaaa

8 tháng 3 2017

đơn giản thôi

8 tháng 3 2017

\(A=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{47\cdot48\cdot49}+\frac{2}{48\cdot49\cdot50}\)

\(A=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{47\cdot48}-\frac{1}{48\cdot49}+\frac{1}{48\cdot49}-\frac{1}{49\cdot50}\)

\(A=\frac{1}{2\cdot3}-\frac{1}{49\cdot50}\)

\(A=\frac{1}{6}-\frac{1}{2450}\)

\(A=\frac{611}{3675}\)

mong giúp đc bn.thk cho mk 

20 tháng 5 2017

Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :

Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

đưa phân số cuối lên đầu :

Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)

Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)

Q = 50 . A

Vậy \(\frac{P}{Q}=\frac{1}{50}\)