A= 3n+8/n+2 (n thuộc Z; n khác -2)
Tìm n để A nguyên
giúp mik vs ai nhanh vs đúng mik tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để các p/số là số nguyên thì
a. 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b. 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
xét n^2+4n+3= n^2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n^2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n^2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2 Vậy ...... chia hết cho 8
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
Ta có:
\(\frac{3n+8}{n+2}=\frac{3n+4+4}{n+2}=\frac{3\left(n+2\right)+4}{n+2}=\frac{n+2}{n+1}+\frac{4}{n+2}=1+\frac{4}{n+2}\)
Suy ra n+2 thuộc Ư(4)
Ư(4)là:[1,-1,2,-2,4,-4]
ta có bảng sau:
n+2 | 1 | -1 | 2 | -2 | 4 | -4 |
n | --1 | -3 | 0 | -4 | 2 | -6 |
Mà n là số nguyên
Suy ra n=0;2
ủng hộ đầu xuân năm mới tròn 770 nha
a)\(\frac{3n+7}{n-2}=\frac{3n-6+13}{n-2}=3+\frac{13}{n-2}\)
để 3n+7/n-2 thuộc Z thì \(n-2\in\left\{-13;-1;1;13\right\}\Rightarrow n\in\left\{-12;1;3;15\right\}\)
b)\(\frac{n+8}{n-2}=\frac{n-2+10}{n-2}=1+\frac{10}{n-2}\)
để n+8/n-2 thuộc N thì \(n-2\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(ncóthể\in\left\{-8;-3;0;1;3;4;7;12\right\}\)mà n thuộc N
\(n\left\{0;1;3;4;7;12\right\}\)
Để \(A=\frac{3n+8}{n+2}\) nguyên
thì 3n + 8 chia hết cho n + 2
=> 3n + 8 = 3 . ( n + 2 ) + 2 chia hết cho n + 2
mà 3. ( n + 2 ) chia hết cho n + 2
3 . ( n + 2 ) + 2 chia hết cho n + 2 <=> 2 chia hết cho n + 2
Ta có : n + 2 thuốc U ( 2 ) = { 1 ; 2 ; - 1 ; - 2 }
n + 2 = 1 => n = -1
n + 2 = 2 => n = 0
n + 2 = -1 => n = - 3
n + 2 = -2 => n = - 4
Vậy n = { -1 ; 0 ; -3 ; -4 } thỏa mãn đ/k thì A nguyên