K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

ko hiểu, ko bt

3 tháng 8 2019

toán lớp 7 tìm GTNN jup với

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

15 tháng 4 2018

x=4,y=6

15 tháng 4 2018

Mình cần cả cách trình bày nữa bạn

NV
7 tháng 6 2020

Ta có: \(x^2+\frac{1}{4}\ge x\Rightarrow x^2+y+\frac{3}{4}\ge x+y+\frac{1}{2}\)

Tương tự \(y^2+x+\frac{3}{4}\ge x+y+\frac{1}{2}\)

\(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(x+y+\frac{1}{2}\right)^2\) (1)

Mặt khác: \(\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\le\frac{1}{4}\left(2x+2y+1\right)^2=\left(x+y+\frac{1}{2}\right)^2\) (2)

(1);(2) \(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

10 tháng 1 2020

ai giải giúp mik với, mik cần gấp lắm

29 tháng 1 2017

P.An hở

27 tháng 11 2019

ơ bài nào v ...................

27 tháng 11 2019

Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)