Cho x,y,z >0 và thỏa mãn
x+y+z=\(\sqrt{xy}+\sqrt{yz}+\)\(\sqrt{zx}\)
CM x=y=z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Theo bất đẳng thức Cô-Si cho ba số dương \(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x.\)
Vậy ta có \(x^2+2\sqrt{x}\ge3x.\) Tương tự \(y^2+2\sqrt{y}\ge3y,\) và \(z^2+2\sqrt{z}\ge3z.\) Cộng các bất đẳng thức lại ta được
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\) . Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx.\) (ĐPCM)
Theo bất đẳng thức Cô-Si cho 3 số \(x^2+2\sqrt x=x^2+\sqrt x+\sqrt x\ge 3\sqrt[3]{x^2\sqrt x\sqrt x}=3x.\) Tương tự, ta cũng có \(y^2+2\sqrt y\ge3y,z^2+2\sqrt z\ge3z.\) Cộng lại ta được \(x^2+y^2+z^2+2\sqrt x+2\sqrt y+2\sqrt z\ge3(x+y+z)=(x+y+z)^2\). Từ đây khai triển bình phương vế phải sẽ được \(2(\sqrt x+\sqrt y+\sqrt z)\ge 2(xy+yz+zx).\) Do đó ta có điều phải chứng minh.
Bất đẳng thức cần chứng minh tương đương:
\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)
Theo bđt Bunhiakowski:
\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).
Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\); \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).
Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.
Vậy ta có đpcm.
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
Tương tự:
\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)
Cộng vế với vế:
\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)
Ta phải chứng minh:
\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)
\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
Mà \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)
Theo C.B.S
\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Phải chứng minh
\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)
Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)
\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
=> ĐPCM
\(\dfrac{x}{x+\sqrt{x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)\(\ge\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
nhân cả 2 vế với 2 sau đó đưa về hằng đẳng thức dạng A2 + B2 + C2 =0 suy ra A=B=C=0