gọi AD,BE,CF lần lượt là 3 đường cao của tam giác ABC. Chứng minh : nếu 1/AD2 =1/BE2+1/CF2 thì tam giác ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
1) Ta có: \(\angle AEB+\angle ADB=90+90=180\Rightarrow AEBD\) nội tiếp
2) Tương tự ta chứng minh được: \(ADCF\) nội tiếp
\(\Rightarrow\angle ADF=\angle ACF=\angle ABC\)
3) Ta có: \(\angle AED=\angle ABC=\angle ADF\)
Tương tự \(\Rightarrow\angle ADE=\angle AFD\)
Xét \(\Delta ADE\) và \(\Delta AFD:\) Ta có: \(\left\{{}\begin{matrix}\angle ADE=\angle AFD\\\angle AED=\angle ADF\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta AFD\left(g-g\right)\Rightarrow\dfrac{AD}{AF}=\dfrac{AE}{AD}\Rightarrow AD^2=AE.AF\)
4) \(\Delta ADE\sim\Delta AFD\Rightarrow\angle DAE=\angle DAF\)
\(\Rightarrow AD\) là phân giác \(\angle EAF\)
Vì M,N là trung điểm AE,AF \(\Rightarrow\left\{{}\begin{matrix}AM=\dfrac{1}{2}AE\\AN=\dfrac{1}{2}AF\end{matrix}\right.\)
Theo đề: \(AD=AM+AN\Rightarrow AD^2=\left(AM+AN\right)^2\)
\(\Rightarrow AE.AF=\dfrac{1}{4}\left(AE+AF\right)^2\Rightarrow4AE.AF=\left(AE+AF\right)^2\)
mà \(\left(AE+AF\right)^2\ge4AE.AF\) (BĐT Cô-si)
\(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A có \(AD\) là phân giác \(\angle EAF\)
\(\Rightarrow AD\) là trung trực \(EF\Rightarrow AD\bot EF\) mà \(AD\bot BC\)
\(\Rightarrow BC\parallel EF\)
Ta có: \(\angle EBC=\angle EBA+\angle ABC=\angle ACB+\angle ACF=\angle FCB\)
\(\Rightarrow BCFE\) là hình thang cân có \(AD\) là trung trực EF
\(\Rightarrow AD\) là trung trực BC mà \(O\in\) trung trực BC
\(\Rightarrow A,O,D\) thẳng hàng
a: HC vuông góc AI
IH vuông góc HM
=>góc AIH=góc MHC(1)
góc IAH=90 độ-góc ABD
góc HCM=90 độ-góc FBC
=>góc IAH=góc HCM(2)
Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH
b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N
=>HM vuông góc CN
=>M là trựctâm của ΔHCN
=>NM vuông góc CH
=>NM//AB
=>NM//BG
=>N là trung điểm của CG
IK//GC
=>IH/GN=HK/NC
mà GN=NC
nên IH=HK
=>H là trung điểm của IK
có ∠ABE+∠BAC=90
∠ACF+∠BAC=90
⇒∠ABE=∠ACF=∠AM=∠AN⇒∠AM=∠AN
có OM=ON⇒ OA là trung trực
⇒OA⊥MN
xét ΔAFH và ΔADB có
∠A chung
∠F=∠D=90
⇒ΔAFH ∼ ΔADB (g.g)
⇒\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)=AF.AB=AH.AD
tương tự xét ΔBFH và ΔBEA có
∠B chung
∠F=∠E=90
⇒ΔBFH ∼ ΔBEA (g.g)
⇒\(\dfrac{BF}{BH}=\dfrac{BE}{BA}\)=BF.BA=BH.BE
⇒AH.AD+BH.BE=AB2