Tính
A=(4^9x36+64^4):(16^4x100)
B=72^3x54^2:108^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giải bài toán này, chúng ta sẽ tính từng phần và sau đó kết hợp kết quả cuối cùng.
72^3 = 72 * 72 * 72 = 373248 54^2 = 54 * 54 = 2916 108^4 = 108 * 108 * 108 * 108 = 16777216
Bây giờ, ta thay các giá trị này vào biểu thức:
(72^3 * 54^2) / 108^4 = (373248 * 2916) / 16777216
Tiếp theo, ta thực hiện phép tính trong ngoặc, sau đó chia cho 16777216:
(373248 * 2916) / 16777216 = 1088391168 / 16777216
Kết quả là 64.8.
Vậy, giá trị của biểu thức là 64.8.
\(\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(2^2\cdot3^3\right)^4}=\dfrac{2^9\cdot3^6\cdot2^2\cdot3^6}{2^8\cdot3^{12}}\)
\(=\dfrac{2^{11}\cdot3^{12}}{2^8\cdot3^{12}}=2^3=8\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
a.
\(4^{10}\times8^{15}=\left(2^2\right)^{10}\times\left(2^3\right)^{15}=2^{20}\times2^{45}=2^{65}\)
b.
\(4^{15}\times5^{30}=\left(2^2\right)^{15}\times5^{30}=2^{30}\times5^{30}=\left(2\times5\right)^{30}=10^{30}\)
c.
\(\frac{27^{16}}{9^{10}}=\frac{\left(3^3\right)^{16}}{\left(3^2\right)^{10}}=\frac{3^{48}}{3^{20}}=3^{28}\)
d.
\(A=\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
e.
\(B=\frac{3^{10}\times11+3^{10}\times5}{3^9\times2^4}=\frac{3^{10}\times\left(11+5\right)}{3^9\times16}=\frac{3\times16}{16}=3\)
Chúc bạn học tốt
a, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^{10}.\left(13+65\right)}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.78}{2^{11}.13}\)\(=\dfrac{1.6}{2.1}=\dfrac{1.3}{1.1}=3\)
b: \(=\dfrac{2^{20}\cdot3^2+2^{54}}{2^{18}\cdot5^2}=\dfrac{2^{20}\left(3^2+2^{32}\right)}{2^{18}\cdot5^2}=\dfrac{2^2\left(3^2+2^{32}\right)}{25}\)
c: \(=\dfrac{2^9\cdot3^6\cdot3^6\cdot2^2}{2^8\cdot3^{12}}=\dfrac{2^{11}}{2^8}=8\)
d: \(=\dfrac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}=9\)
a, \(A=\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}=\dfrac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(=\dfrac{3^{10}.2^4}{3^9.2^4}=3\)
b, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}=\dfrac{2^{10}.78}{2^8.104}\)
\(=\dfrac{2^2.3}{4}=3\)
c, \(C=\dfrac{4^9.36+64^4}{16^4.100}=\dfrac{\left(2^2\right)^9.36+\left(2^6\right)^4}{\left(2^4\right)^4.100}\)
\(=\dfrac{2^{18}.36+2^{24}}{2^{16}.100}=\dfrac{2^{18}.\left(36+2^6\right)}{2^{16}.100}\)
\(=\dfrac{2^4.100}{100}=2^4=16\)
Câu d làm tương tự! Chúc bạn học tốt!!!
\(A=\left(4^9\cdot36+64^4\right)\div\left(16^4\cdot100\right)\)
\(A=\left[4^9\cdot4\cdot9+\left(4^3\right)^4\right]\div\left[\left(4^2\right)^4\cdot25\cdot4\right]\)
\(A=\left(4^{10}\cdot9+4^{4\cdot3}\right)\div\left[4^{2\cdot4}\cdot25\cdot4\right]\)
\(A=\left(4^{10}\cdot9+4^{12}\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=\left(4^{10}\cdot9+4^{10}\cdot4^2\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=\left(4^{10}\cdot9+4^{10}\cdot16\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=4^{10}\cdot\left(9+16\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=4^{10}\cdot25\div\left(4^8\cdot25\cdot4\right)\)
\(A=\frac{4^{10}\cdot25}{4^8\cdot25\cdot4}\)
\(A=\frac{4^2\cdot1}{1\cdot1\cdot4}\)
\(A=4\)
\(B=72^3\cdot54^2\div108^4\)
Ta lần lượt phần tích \(72,54,108\) ra thừa số nguyên tố.
\(72=2^3\cdot3^2\).
\(54=2\cdot3^3\)
\(108=2^2\cdot3^3\)
\(\Rightarrow B=\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2\div\left(2^2\cdot3^3\right)^4\)
\(B=\left(2^3\right)^3\cdot\left(3^2\right)^3\cdot2^2\cdot\left(3^3\right)^3\div\left[\left(2^2\right)^4\cdot\left(3^3\right)^4\right]\)
\(B=2^{3\cdot3}\cdot3^{2\cdot3}\cdot2^2\cdot3^{3\cdot2}\div\left(2^{2\cdot4}\cdot3^{3\cdot4}\right)\)
\(B=2^9\cdot3^6\cdot2^2\cdot3^6\div\left(2^8\cdot3^{12}\right)\)
\(B=\left(2^9\cdot2^2\div2^8\right)\cdot\left(3^6\cdot3^6\div3^{12}\right)\)
\(B=2^{9+2-8}\cdot3^{6+6-12}\)
\(B=2^3\cdot1\)
\(B=8\)