Tim x,y,z
a/\(\left(2x-y\right)^2+\left(y-2\right)^2+\)\(\sqrt{\left(x+y+z\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính chất ''bình phương của một biểu thức''+''căn bậc hai số học'': luôn không âm
Ta có: \(\left(2x-y\right)^2\ge0\forall x,y\); \(\left(y-2\right)^2\ge0\forall y\); \(\sqrt{\left(x+y+z\right)^2}\ge0\forall x,y,z\)
Suy ra \(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{\left(x+y+z\right)^2}\ge0.\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}\left(2x-y\right)^2=0\\\left(y-2\right)^2=0\\\sqrt{\left(x+y+z\right)^2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y\\y=2\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=-3\end{cases}.}}\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)