Tìm x,y thỏa mãn:
2(x-5)^4+5|2y-7|^5=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2\left(x-5\right)^4\ge0\forall x\)
\(5\left|2y-7\right|^5\ge0\forall y\)
Để bt =0 \(\Rightarrow\hept{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}}\)
Vậy.....
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
Do \(\orbr{\begin{cases}2(x-5)^4\ge0\forall x\\5\left|2y-7\right|^5\ge0\forall y\end{cases}}\Rightarrow2(x-5)^4+5\left|2y-7\right|^5\ge0\forall x,y\)
Dấu bằng xảy ra khi và chỉ khi \(\orbr{\begin{cases}2(x-5)^4=0\\5\left|2y-7\right|^5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)
Vậy GTNN bằng 0 khi x = 5 , y = 7/2
Do đó x = 5 , y = 7/2