cho B = \(\frac{\sqrt{a}+6}{\sqrt{a}+1}\text{.Tìm a số nguyên để B là số nguyên.}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\left(\sqrt{a}+1\right)+5}{\sqrt{a}+1}=\frac{\sqrt{a}+1}{\sqrt{a}+1}+\frac{5}{\sqrt{a}+1}=1+\frac{5}{\sqrt{a}+1}\)
Để \(1+\frac{5}{\sqrt{a}+1}\) là số nguyên <=> \(\frac{5}{\sqrt{a}+1}\) là số nguyên
=> \(\sqrt{a}+1\) thuộc ước của 5 là - 5; - 1; 1 ; 5
Mà \(\sqrt{a}+1\) > 0 => \(\sqrt{a}+1\) = { 1 ; 5 }
\(\Rightarrow\sqrt{a}\) = { 0 ; 4 }
=> a = { 0; 16 }
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)
Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)
Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng :
\(\sqrt{x}+1\) | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -6 (loại) | -2(loại | 0 | 4 |
x | 0 | 2 |
bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa
\(B=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\sqrt{a}+1+5}{\sqrt{a}+1}=1+\frac{5}{\sqrt{a}+1}\)
\(B\in Z\Leftrightarrow1+\frac{5}{\sqrt{a}+1}\in Z\)\(\Rightarrow\frac{5}{\sqrt{a}+1}\in Z\)\(\Leftrightarrow\sqrt{a}+1\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)Nhưng \(\sqrt{a}+1\ge1\forall x\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}+1=1\\\sqrt{a}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{a}=0\\\sqrt{a}=4\end{cases}\Rightarrow}\orbr{\begin{cases}a=0\\a=16\end{cases}}}\)
\(KL:a\in\left\{0;16\right\}\)
Ai tích sai cho chị Linh vậy bài đúng rồi còn tích sai