phân tích đa tứcthành nhân tử
(x^2-2xy+y^2)(x-y)-(x-y)(x^2+xy+y^2)
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(3x+3y-x^2-2xy-y^2\)
\(=3\left(x+y\right)-\left(x+y\right)^2\)
\(=\left(x+y\right)\left(3-x-y\right)\)
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.
a: \(=-x^2y\cdot x+x^2y\cdot y=x^2y\left(-x+y\right)\)
b: \(=-xy^2\cdot x^2-xy^2\cdot z=-xy^2\left(x^2+z\right)\)
c: x^2y^3-xy^2
=xy^2*xy-xy^2
=xy^2(xy-1)
d: -x^3z-z
=z(-x^3-1)
=-z(x+1)(x^2-x+1)
e: =x(x-y)+(x-y)
=(x-y)(x+1)
n: =x^2(x-1)-(x-1)
=(x-1)(x^2-1)
=(x-1)^2(x+1)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
ko phải phân tích đa thức thành nhân tử
là rút gọn biểu thức
hì hì