Rút gọn A = \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\left(x>3\right)\\ A=\dfrac{\left(x+3\right)+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}\\ A=\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2+\sqrt{x+3}\right)}\)
Tới đây chịu rùi, hình như đề sai đk?
C = \(=\frac{x+3+2\text{ }\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)
\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\frac{\left(\sqrt{x+3}\right)^2+2\sqrt{x+3}\sqrt{x-3}}{2.\left(\sqrt{x-3}\right)^2+\sqrt{x+3}\sqrt{x-3}}\)
\(=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)
\(=\frac{\sqrt{x^2-9}}{x-3}\)
\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2\sqrt{x}-9-\left(x-9\right)+2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x-3}}\)
Đặt \(a=\sqrt{x+3}\) , \(b=\sqrt{x-3}\).
Ta có : \(A=\frac{\left(x+3\right)+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}=\frac{a^2+2ab}{2b^2+ab}\)
\(=\frac{a^2+2ab}{2b^2+ab}=\frac{a\left(a+2b\right)}{b\left(a+2b\right)}=\frac{a}{b}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)
\(A=\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\\ ĐKXĐ:x\ne3\\ A=\frac{x+3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}\\ =\frac{\sqrt{x+3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)