K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

toi chịu >:) nhắn cho vui thoi

4 tháng 12 2016

các bạn ơi giại hộ minh bài này với

20 tháng 10 2017

Sao Cũng Được

Trả lời

13

Đánh dấu

13/06/2015 lúc 12:46

Cho : S = 30 + 32 + 34 + 36 + ... + 32002

 a) Tính S 

 b) Chứng minh S chia hết cho 7

Được cập nhật 09/10/2017 lúc 18:34

Toán lớp 6

thien ty tfboys 13/06/2015 lúc 13:06
 Báo cáo sai phạm

a)nhân S với 3ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 Đúng 23  Sai 0

bui duc anh 04/04/2016 lúc 21:44
 Báo cáo sai phạm

S= 3^0 +3^2 +3^4 +....+ 3^2002

9S= 3^4 +3^6+.......+3^2004

9S-S=3^2004-1

8S=3^2004-1

S=3^2004-1/8

 Đúng 8  Sai 0

thien ty tfboys 13/06/2015 lúc 13:05
 Báo cáo sai phạm

 S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

 Đúng 6  Sai 0

oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
 Báo cáo sai phạm

a) 

21 tháng 2 2015

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

29 tháng 4 2016

S chia het cho 7

5 tháng 10 2018

Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,ta có S là sô nguyên nên fải c­­­hung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7

20 tháng 8 2021

\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(=1+3^2+3^4+3^6+...+3^{2014}\)

\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)

\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)

Vậy ta có đpcm 

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN