Cho a,b,c >0. CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< =abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xời làm hoài Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Đặt \(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{a+b+d}\)
Ta thấy: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+b+d}>\frac{d}{a+b+c+d}\)
=> \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{a+b+d}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
=>\(A>\frac{a+b+c+d}{a+b+c+d}\)
=>A>1
Lại có: \(\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}<\frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+d}<\frac{d+c}{a+b+c+d}\)
=>\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{a+b+d}<\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}\)
=>\(A<\frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)
=>\(A<\frac{2.\left(a+b+c+d\right)}{a+b+c+d}\)
=>A<2
Vậy \(1<\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{a+b+d}<2\)