tìm n để 3n+1/5-2n là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có tử = \(2n^2+n+2n+1+59=n\left(2n+1\right)+\left(2n+1\right)+59=\left(n+1\right)\left(2n+1\right)+59\)
mà để P là số nguyên <=> \(59⋮2n+1\)
đến chỗ này lập bảng nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3
⇒ 2n-3+8⋮n-3
⇒ 8⋮n-3 ⇒ n-3∈Ư(8)
Ư(8)={...}
⇒n=...
;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A=\(\frac{2n+1+3n+5-4n+5}{n-3}\)
A=\(\frac{5n+6-4n+5}{n-3}\)
A=\(\frac{n+1}{n-3}\)
A=\(\frac{n-3+4}{n-3}\)
A=\(\frac{n-3}{n-3}\)+ \(\frac{4}{n-3}\)
A=1+\(\frac{4}{n-3}\)
Để A nguyên thì 4⋮n-3 hay n-3∈Ư(4).Ta có bảng sau:
n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 4 | 5 | 7 | 2 | 1 | -1 |
Vậy n∈{ 4;5;7;2;1;-1)
Để P có giá trị nguyên
=> 2n - 5 \(⋮\)3n - 2
=> 6n - 15 \(⋮\)3n - 2
=> 2( 3n - 2 ) - 11 \(⋮\)3n - 2
=> 11 \(⋮\)3n - 2
=> 3n - 2 \(\in\)Ư(11)
=> 3n - 2 \(\in\){ 1 ; -1 ; 11 ; -11 }
=> 3n \(\in\){ 3 ; 1 ; 13 ; -9 }
=> n \(\in\){ 1 ; 1/3 ; 13/3 ; -3 }
Mà n là số nguyên
Vậy n \(\in\){ 1 ; -3 }
\(\frac{3n+1}{5-2n}\)là số nguyên <=> 3n+1 \(⋮\)5-2n
=> 6n + 2\(⋮\)5-2n (1)
Mà 5 - 2n\(⋮\)5 - 2n
=> 3(5 - 2n) \(⋮\)5 - 2n
=> (15 - 6n)\(⋮\)5 - 2n (2)
Từ (1),(2) => [(6n + 2) + (15 - 6n)] \(⋮\)5 - 2n
=> 17 \(⋮\)5 - 2n => 5 - 2n\(\in\)Ư(17) ={ 1; -1 ; 17; -17}
Ta có bảng :
KL:...